Dynamic Point Cloud Geometry Compression Using Multiscale Inter
Conditional Coding
- URL: http://arxiv.org/abs/2301.12165v1
- Date: Sat, 28 Jan 2023 11:34:06 GMT
- Title: Dynamic Point Cloud Geometry Compression Using Multiscale Inter
Conditional Coding
- Authors: Jianqiang Wang, Dandan Ding, Hao Chen, Zhan Ma
- Abstract summary: This work extends the Multiscale Sparse Representation (MSR) framework developed for Point Cloud Geometry Compression (PCGC) to support the dynamic PCGC.
The reconstruction of the preceding Point Cloud Geometry (PCG) frame is progressively downscaled to generate multiscale temporal priors.
- Score: 27.013814232906817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work extends the Multiscale Sparse Representation (MSR) framework
developed for static Point Cloud Geometry Compression (PCGC) to support the
dynamic PCGC through the use of multiscale inter conditional coding. To this
end, the reconstruction of the preceding Point Cloud Geometry (PCG) frame is
progressively downscaled to generate multiscale temporal priors which are then
scale-wise transferred and integrated with lower-scale spatial priors from the
same frame to form the contextual information to improve occupancy probability
approximation when processing the current PCG frame from one scale to another.
Following the Common Test Conditions (CTC) defined in the standardization
committee, the proposed method presents State-Of-The-Art (SOTA) compression
performance, yielding 78% lossy BD-Rate gain to the latest standard-compliant
V-PCC and 45% lossless bitrate reduction to the latest G-PCC. Even for
recently-emerged learning-based solutions, our method still shows significant
performance gains.
Related papers
- CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.
We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.
During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)
RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Rate-Distortion Optimized Skip Coding of Region Adaptive Hierarchical Transform Coefficients for MPEG G-PCC [13.122745400640305]
Three-dimensional (3D) point clouds are becoming more and more popular for representing 3D objects and scenes.
To tackle this challenge, the Moving Picture Experts Group is actively developing the Geometry-based Point Cloud Compression (G-PCC) standard.
We propose an adaptive skip method for RAHT, which adaptively determines whether to encode the residuals of the last several layers or not.
arXiv Detail & Related papers (2024-12-07T07:43:44Z) - Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [52.82508784748278]
This paper proposes a Control Generative Image Compression framework, termed Control-GIC.
Control-GIC is capable of fine-grained adaption across a broad spectrum while ensuring high-fidelity and generality compression.
We develop a conditional decoder capable of retrieving historic multi-granularity representations according to encoded codes, and then reconstruct hierarchical features in the formalization of conditional probability.
arXiv Detail & Related papers (2024-06-02T14:22:09Z) - Hierarchical Prior-based Super Resolution for Point Cloud Geometry
Compression [39.052583172727324]
The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds.
This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression.
arXiv Detail & Related papers (2024-02-17T11:15:38Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
Cross modal compression is a semantic compression framework for visual data.
We show that our proposed CMC can achieve encouraging reconstructed results with an ultrahigh compression ratio.
arXiv Detail & Related papers (2022-09-06T15:31:11Z) - Inter-Frame Compression for Dynamic Point Cloud Geometry Coding [14.79613731546357]
We propose a lossy compression scheme that predicts the latent representation of the current frame using the previous frame.
The proposed network utilizes convolutions with hierarchical multiscale 3D feature learning to encode the current frame.
The proposed method achieves more than 88% BD-Rate (Bjontegaard Delta Rate) reduction against G-PCCv20 Octree.
arXiv Detail & Related papers (2022-07-25T22:17:19Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Communication-Efficient Federated Learning via Quantized Compressed
Sensing [82.10695943017907]
The presented framework consists of gradient compression for wireless devices and gradient reconstruction for a parameter server.
Thanks to gradient sparsification and quantization, our strategy can achieve a higher compression ratio than one-bit gradient compression.
We demonstrate that the framework achieves almost identical performance with the case that performs no compression.
arXiv Detail & Related papers (2021-11-30T02:13:54Z) - Sparse Tensor-based Multiscale Representation for Point Cloud Geometry
Compression [18.24902526033056]
We develop a unified Point Cloud Geometry (PCG) compression method through Sparse Processing (STP) based multiscale representation of voxelized PCG.
Applying the complexity reduces the complexity significantly because it only performs the convolutions centered at Most-Probable Positively-Occupied Voxels (MP-POV)
The proposed method presents lightweight complexity due to point-wise, and tiny storage desire because of model sharing across all scales.
arXiv Detail & Related papers (2021-11-20T17:02:45Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
We propose a multiscale-to-end learning framework which hierarchically reconstructs the 3D Point Cloud Geometry.
The framework is developed on top of a sparse convolution based autoencoder for point cloud compression and reconstruction.
arXiv Detail & Related papers (2020-11-07T16:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.