Rate-Distortion Optimized Skip Coding of Region Adaptive Hierarchical Transform Coefficients for MPEG G-PCC
- URL: http://arxiv.org/abs/2412.05574v1
- Date: Sat, 07 Dec 2024 07:43:44 GMT
- Title: Rate-Distortion Optimized Skip Coding of Region Adaptive Hierarchical Transform Coefficients for MPEG G-PCC
- Authors: Zehan Wang, Yuxuan Wei, Hui Yuan, Wei Zhang, Peng Li,
- Abstract summary: Three-dimensional (3D) point clouds are becoming more and more popular for representing 3D objects and scenes.
To tackle this challenge, the Moving Picture Experts Group is actively developing the Geometry-based Point Cloud Compression (G-PCC) standard.
We propose an adaptive skip method for RAHT, which adaptively determines whether to encode the residuals of the last several layers or not.
- Score: 13.122745400640305
- License:
- Abstract: Three-dimensional (3D) point clouds are becoming more and more popular for representing 3D objects and scenes. Due to limited network bandwidth, efficient compression of 3D point clouds is crucial. To tackle this challenge, the Moving Picture Experts Group (MPEG) is actively developing the Geometry-based Point Cloud Compression (G-PCC) standard, incorporating innovative methods to optimize compression, such as the Region-Adaptive Hierarchical Transform (RAHT) nestled within a layer-by-layer octree-tree structure. Nevertheless, a notable problem still exists in RAHT, i.e., the proportion of zero residuals in the last few RAHT layers leads to unnecessary bitrate consumption. To address this problem, we propose an adaptive skip coding method for RAHT, which adaptively determines whether to encode the residuals of the last several layers or not, thereby improving the coding efficiency. In addition, we propose a rate-distortion cost calculation method associated with an adaptive Lagrange multiplier. Experimental results demonstrate that the proposed method achieves average Bj{\o}ntegaard rate improvements of -3.50%, -5.56%, and -4.18% for the Luma, Cb, and Cr components, respectively, on dynamic point clouds, when compared with the state-of-the-art G-PCC reference software under the common test conditions recommended by MPEG.
Related papers
- SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
We propose an end-to-end compression method for dense point clouds.
The proposed method combines a frequency sampling module, an adaptive scale feature extraction module with geometry assistance, and a global hyperprior entropy model.
arXiv Detail & Related papers (2024-09-16T13:59:43Z) - Gaussian Splatting with Localized Points Management [52.009874685460694]
Localized Point Management (LPM) is capable of identifying those error-contributing zones in the highest demand for both point addition and geometry calibration.
LPM applies point densification in the identified zone, whilst resetting the opacity of those points residing in front of these regions so that a new opportunity is created to correct ill-conditioned points.
Notably, LPM improves both vanilla 3DGS and SpaceTimeGS to achieve state-of-the-art rendering quality while retaining real-time speeds.
arXiv Detail & Related papers (2024-06-06T16:55:07Z) - Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [52.82508784748278]
This paper proposes a Control Generative Image Compression framework, termed Control-GIC.
Control-GIC is capable of fine-grained adaption across a broad spectrum while ensuring high-fidelity and generality compression.
We develop a conditional decoder capable of retrieving historic multi-granularity representations according to encoded codes, and then reconstruct hierarchical features in the formalization of conditional probability.
arXiv Detail & Related papers (2024-06-02T14:22:09Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Hierarchical Prior-based Super Resolution for Point Cloud Geometry
Compression [39.052583172727324]
The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds.
This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression.
arXiv Detail & Related papers (2024-02-17T11:15:38Z) - Dynamic Point Cloud Geometry Compression Using Multiscale Inter
Conditional Coding [27.013814232906817]
This work extends the Multiscale Sparse Representation (MSR) framework developed for Point Cloud Geometry Compression (PCGC) to support the dynamic PCGC.
The reconstruction of the preceding Point Cloud Geometry (PCG) frame is progressively downscaled to generate multiscale temporal priors.
arXiv Detail & Related papers (2023-01-28T11:34:06Z) - Efficient dynamic point cloud coding using Slice-Wise Segmentation [10.850101961203748]
MPEG recently developed a video-based point cloud compression (V-PCC) standard for dynamic point cloud coding.
Patch generations and self-occluded points in the 3D to the 2D projection are the main reasons for missing data using V-PCC.
This paper proposes a new method that introduces overlapping slicing to decrease the number of patches generated and the amount of data lost.
arXiv Detail & Related papers (2022-08-17T04:23:45Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
We propose a multiscale-to-end learning framework which hierarchically reconstructs the 3D Point Cloud Geometry.
The framework is developed on top of a sparse convolution based autoencoder for point cloud compression and reconstruction.
arXiv Detail & Related papers (2020-11-07T16:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.