論文の概要: Inference on the Optimal Assortment in the Multinomial Logit Model
- arxiv url: http://arxiv.org/abs/2301.12254v1
- Date: Sat, 28 Jan 2023 17:09:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 18:11:45.770442
- Title: Inference on the Optimal Assortment in the Multinomial Logit Model
- Title(参考訳): 多項ロジットモデルにおける最適アソートメントの推理
- Authors: Shuting Shen, Xi Chen, Ethan X. Fang, Junwei Lu
- Abstract要約: 意思決定者は、与えられた資産が最適の品揃えに対して真であるかどうかをテストすることだけに関心を持つかもしれない。
本稿では,そのような特性をテストするための新しい推論フレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.689897325621672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assortment optimization has received active explorations in the past few
decades due to its practical importance. Despite the extensive literature
dealing with optimization algorithms and latent score estimation, uncertainty
quantification for the optimal assortment still needs to be explored and is of
great practical significance. Instead of estimating and recovering the complete
optimal offer set, decision makers may only be interested in testing whether a
given property holds true for the optimal assortment, such as whether they
should include several products of interest in the optimal set, or how many
categories of products the optimal set should include. This paper proposes a
novel inferential framework for testing such properties. We consider the widely
adopted multinomial logit (MNL) model, where we assume that each customer will
purchase an item within the offered products with a probability proportional to
the underlying preference score associated with the product. We reduce
inferring a general optimal assortment property to quantifying the uncertainty
associated with the sign change point detection of the marginal revenue gaps.
We show the asymptotic normality of the marginal revenue gap estimator, and
construct a maximum statistic via the gap estimators to detect the sign change
point. By approximating the distribution of the maximum statistic with
multiplier bootstrap techniques, we propose a valid testing procedure. We also
conduct numerical experiments to assess the performance of our method.
- Abstract(参考訳): 過去数十年間、アソシエーションの最適化は実践的な重要性から活発な探索を受けてきた。
最適化アルゴリズムと潜在スコア推定を扱う広範な文献があるにもかかわらず、最適な分類のための不確実性定量化は依然として検討され、非常に実用的な意味を持つ。
決定者は、完全な最適提案セットを推定し、回復する代わりに、最適集合にいくつかの興味のある製品を含めるべきかどうか、最適集合が含めるべき製品のカテゴリ数など、与えられた性質が最適選択に対して真であるかどうかをテストすることに関心があるかもしれない。
本稿では,そのような特性をテストするための新しい推論フレームワークを提案する。
我々は、広く採用されている多項ロジット(mnl)モデルを検討し、各顧客が製品に関連付けられた嗜好スコアに比例する確率で提供された製品の中でアイテムを購入すると仮定する。
我々は、限界収益ギャップの符号変化点検出に伴う不確実性を定量化するために、一般的な最適収差特性を推定する。
限界収益ギャップ推定器の漸近正規度を示し、ギャップ推定器を介して最大統計値を構築し、符号変化点を検出する。
最大統計量の分布をマルチプライアブートストラップ法で近似することにより,有効なテスト手順を提案する。
また,本手法の性能評価のための数値実験を行った。
関連論文リスト
- Batched Bayesian optimization with correlated candidate uncertainties [44.38372821900645]
純粋に活用する qPO (multipoint of Optimality) による離散最適化のための獲得戦略を提案する。
本研究では, 大規模化学ライブラリのモデル誘導探索に適用し, バッチ化ベイズ最適化における最先端手法と同等以上の性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-08T20:13:12Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Differentiating Policies for Non-Myopic Bayesian Optimization [5.793371273485735]
本稿では,ロールアウト関数とその勾配を効率的に推定し,サンプリングポリシを実現する方法を示す。
本稿では,ロールアウト関数とその勾配を効率的に推定し,サンプリングポリシを実現する方法について述べる。
論文 参考訳(メタデータ) (2024-08-14T21:00:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Optimize-via-Predict: Realizing out-of-sample optimality in data-driven
optimization [0.0]
本稿では,データ駆動最適化の定式化について検討する。
我々は、規範的なソリューションを、そのようなデータセットを意思決定にマッピングする意思決定者ルールとして定義する。
本稿では,このようなサンプル外最適解に対して,サンプリングアルゴリズムと2分割探索アルゴリズムを組み合わせることで効率よく解ける最適化問題を提案する。
論文 参考訳(メタデータ) (2023-09-20T08:48:50Z) - Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning [5.346298077607419]
この課題を解決するために,半教師付き学習を用いた密度比推定に基づくベイズ最適化を提案する。
本手法の実証的な結果といくつかの基本手法を,未ラベルの点サンプリングと固定サイズのプールを持つ2つの異なるシナリオで示す。
論文 参考訳(メタデータ) (2023-05-24T23:01:56Z) - Bayesian Optimization with Conformal Prediction Sets [44.565812181545645]
コンフォーマル予測(Conformal prediction)は、不確実な定量化手法であり、不特定モデルに対してもカバレッジを保証する。
本稿では,モデルの妥当性が保証された検索空間の領域にクエリを誘導する共形ベイズ最適化を提案する。
多くの場合、クエリのカバレッジはサンプル効率を損なうことなく大幅に改善できる。
論文 参考訳(メタデータ) (2022-10-22T17:01:05Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - SetRank: A Setwise Bayesian Approach for Collaborative Ranking from
Implicit Feedback [50.13745601531148]
提案手法は,提案システムにおける暗黙的フィードバックの特性に対応するために,協調的ランキング(SeetRank)のためのセッティングワイドベイズ的手法を提案する。
具体的には、SetRankは、新しい設定された選好比較の後方確率を最大化することを目的としている。
また、SetRankの理論解析により、余剰リスクの境界が$sqrtM/N$に比例できることを示す。
論文 参考訳(メタデータ) (2020-02-23T06:40:48Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。