Controlling Steering with Energy-Based Models
- URL: http://arxiv.org/abs/2301.12264v1
- Date: Sat, 28 Jan 2023 18:27:09 GMT
- Title: Controlling Steering with Energy-Based Models
- Authors: Mykyta Baliesnyi, Ardi Tampuu, Tambet Matiisen
- Abstract summary: implicit behavioral cloning with energy-based models has shown promising results in robotic manipulation tasks.
We tested if the method's advantages carry on to controlling the steering of a real self-driving car with an end-to-end driving model.
We argue that the steering-only road-following task has too few multimodalities to benefit from energy-based models.
- Score: 1.1602089225841632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: So-called implicit behavioral cloning with energy-based models has shown
promising results in robotic manipulation tasks. We tested if the method's
advantages carry on to controlling the steering of a real self-driving car with
an end-to-end driving model. We performed an extensive comparison of the
implicit behavioral cloning approach with explicit baseline approaches, all
sharing the same neural network backbone architecture. Baseline explicit models
were trained with regression (MAE) loss, classification loss (softmax and
cross-entropy on a discretization), or as mixture density networks (MDN). While
models using the energy-based formulation performed comparably to baseline
approaches in terms of safety driver interventions, they had a higher whiteness
measure, indicating higher jerk. To alleviate this, we show two methods that
can be used to improve the smoothness of steering. We confirmed that
energy-based models handle multimodalities slightly better than simple
regression, but this did not translate to significantly better driving ability.
We argue that the steering-only road-following task has too few multimodalities
to benefit from energy-based models. This shows that applying implicit
behavioral cloning to real-world tasks can be challenging, and further
investigation is needed to bring out the theoretical advantages of energy-based
models.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression [53.33734159983431]
This paper introduces a novel approach to distill neural RL policies into more interpretable forms.
We train expert neural network policies using RL and distill them into (i) GBMs, (ii) EBMs, and (iii) symbolic policies.
arXiv Detail & Related papers (2024-03-21T11:54:45Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - On Learning the Tail Quantiles of Driving Behavior Distributions via
Quantile Regression and Flows [13.540998552232006]
We consider the problem of learning models that accurately capture the diversity and tail quantiles of human driver behavior probability distributions.
We adapt two flexible quantile learning frameworks for this setting that avoid strong distributional assumptions.
We evaluate our approach in a one-step acceleration prediction task, and in multi-step driver simulation rollouts.
arXiv Detail & Related papers (2023-05-22T15:09:04Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Passive and Active Learning of Driver Behavior from Electric Vehicles [2.9623902973073375]
Modeling driver behavior provides several advantages in the automotive industry, including prediction of electric vehicle energy consumption.
Machine learning methods are widely used for driver behavior classification, which may yield some challenges.
These include sequence modeling on long time windows and lack of labeled data due to expensive annotation.
arXiv Detail & Related papers (2022-03-04T08:18:02Z) - Formulation and validation of a car-following model based on deep
reinforcement learning [0.0]
We propose and validate a novel car following model based on deep reinforcement learning.
Our model is trained to maximize externally given reward functions for the free and car-following regimes.
The parameters of these reward functions resemble that of traditional models such as the Intelligent Driver Model.
arXiv Detail & Related papers (2021-09-29T08:27:12Z) - Multimodal VAE Active Inference Controller [0.0]
We present a novel active inference torque controller for industrial arms.
We include multimodal state representation learning using a linearly coupled multimodal variational autoencoder.
Results showed improved tracking and control in goal-directed reaching due to the increased representation power.
arXiv Detail & Related papers (2021-03-07T18:00:27Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
We propose to use action-based driving data for learning representations.
Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery.
arXiv Detail & Related papers (2020-08-21T10:49:13Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.