Passive and Active Learning of Driver Behavior from Electric Vehicles
- URL: http://arxiv.org/abs/2203.02179v2
- Date: Thu, 23 May 2024 10:39:32 GMT
- Title: Passive and Active Learning of Driver Behavior from Electric Vehicles
- Authors: Federica Comuni, Christopher Mészáros, Niklas Åkerblom, Morteza Haghir Chehreghani,
- Abstract summary: Modeling driver behavior provides several advantages in the automotive industry, including prediction of electric vehicle energy consumption.
Machine learning methods are widely used for driver behavior classification, which may yield some challenges.
These include sequence modeling on long time windows and lack of labeled data due to expensive annotation.
- Score: 2.9623902973073375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling driver behavior provides several advantages in the automotive industry, including prediction of electric vehicle energy consumption. Studies have shown that aggressive driving can consume up to 30% more energy than moderate driving, in certain driving scenarios. Machine learning methods are widely used for driver behavior classification, which, however, may yield some challenges such as sequence modeling on long time windows and lack of labeled data due to expensive annotation. To address the first challenge, passive learning of driver behavior, we investigate non-recurrent architectures such as self-attention models and convolutional neural networks with joint recurrence plots (JRP), and compare them with recurrent models. We find that self-attention models yield good performance, while JRP does not exhibit any significant improvement. However, with the window lengths of 5 and 10 seconds used in our study, none of the non-recurrent models outperform the recurrent models. To address the second challenge, we investigate several active learning methods with different informativeness measures. We evaluate uncertainty sampling, as well as more advanced methods, such as query by committee and active deep dropout. Our experiments demonstrate that some active sampling techniques can outperform random sampling, and therefore decrease the effort needed for annotation.
Related papers
- Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - Controlling Steering with Energy-Based Models [1.1602089225841632]
implicit behavioral cloning with energy-based models has shown promising results in robotic manipulation tasks.
We tested if the method's advantages carry on to controlling the steering of a real self-driving car with an end-to-end driving model.
We argue that the steering-only road-following task has too few multimodalities to benefit from energy-based models.
arXiv Detail & Related papers (2023-01-28T18:27:09Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
We propose to use action-based driving data for learning representations.
Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery.
arXiv Detail & Related papers (2020-08-21T10:49:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.