論文の概要: Methods and Tools for Monitoring Driver's Behavior
- arxiv url: http://arxiv.org/abs/2301.12269v1
- Date: Sat, 28 Jan 2023 19:00:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 17:59:56.672690
- Title: Methods and Tools for Monitoring Driver's Behavior
- Title(参考訳): 運転者の行動監視方法とツール
- Authors: Muhammad Tanveer Jan, Sonia Moshfeghi, Joshua William Conniff, Jinwoo
Jang, Kwangsoo Yang, Jiannan Zhai, Monica Rosselli, David Newman, Ruth
Tappen, Borko Furht
- Abstract要約: 本稿では,車内センサの革新的なアーキテクチャとドライバの動作を測定するための手法とツールを提案する。
NIHプロジェクトでは,早期認知症のある高齢ドライバの監視と識別に,方法やツールを含むアーキテクチャが使用されている。
- 参考スコア(独自算出の注目度): 0.1462730735143614
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In-vehicle sensing technology has gained tremendous attention due to its
ability to support major technological developments, such as connected vehicles
and self-driving cars. In-vehicle sensing data are invaluable and important
data sources for traffic management systems. In this paper we propose an
innovative architecture of unobtrusive in-vehicle sensors and present methods
and tools that are used to measure the behavior of drivers. The proposed
architecture including methods and tools are used in our NIH project to monitor
and identify older drivers with early dementia
- Abstract(参考訳): 車内センシング技術は、コネクテッドカーや自動運転車といった主要な技術開発をサポートする能力により、大きな注目を集めている。
車内センシングデータは交通管理システムにとって貴重なデータソースである。
本稿では,非邪魔な車内センサの革新的なアーキテクチャと,運転者の動作を測定するための方法とツールを提案する。
我々のNIHプロジェクトでは,早期認知症ドライバの監視と識別にメソッドやツールを含むアーキテクチャが用いられている。
関連論文リスト
- Optimized Detection and Classification on GTRSB: Advancing Traffic Sign
Recognition with Convolutional Neural Networks [0.0]
本稿では,CNNの精度を96%近く向上する革新的な手法を提案する。
高度なローカライゼーション技術によってさらに精度が向上する可能性を強調している。
論文 参考訳(メタデータ) (2024-03-13T06:28:37Z) - Improving automatic detection of driver fatigue and distraction using
machine learning [0.0]
運転者の疲労と注意をそらした運転は交通事故の重要な要因である。
本稿では,視覚に基づくアプローチと機械学習に基づくアプローチを用いて,疲労と注意をそらした運転行動の同時検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T06:33:46Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
我々は、視線データを用いて、運転者の車両のエゴ軌道を推定することに集中する。
次に、GPSとビデオ入力と視線データを組み合わせた新しいマルチモーダルエゴ軌道予測ネットワークであるG-MEMPを開発する。
その結果,G-MEMPは両ベンチマークにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
本稿では,過去10年間に出版されたコンピュータビジョンと自動運転に関する論文をレビューする。
特に、まず自律運転システムの開発について検討し、各国の主要自動車メーカーによって開発されたこれらのシステムを要約する。
そこで, 深度推定, 物体検出, 車線検出, 信号認識など, 自律運転におけるコンピュータビジョン応用の概要を概観する。
論文 参考訳(メタデータ) (2023-11-15T16:41:18Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCCは、活動やユーティリティの自動化と最適化による効率向上を目指すデータ中心の社会を構想しています。
本稿では、SCCにおけるAIの視点を説明し、道路車両の自動化とスマート交通制御を可能にする交通で使用されるAIベースの技術の概要を示す。
論文 参考訳(メタデータ) (2021-04-07T14:31:08Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Improved YOLOv3 Object Classification in Intelligent Transportation
System [29.002873450422083]
高速道路における車両・運転者・人の検出・分類を実現するために, YOLOv3に基づくアルゴリズムを提案する。
モデルは優れた性能を持ち、道路遮断、異なる姿勢、極端な照明に頑丈である。
論文 参考訳(メタデータ) (2020-04-08T11:45:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。