論文の概要: Neural Relation Graph: A Unified Framework for Identifying Label Noise
and Outlier Data
- arxiv url: http://arxiv.org/abs/2301.12321v2
- Date: Tue, 2 May 2023 06:31:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 17:27:17.638606
- Title: Neural Relation Graph: A Unified Framework for Identifying Label Noise
and Outlier Data
- Title(参考訳): Neural Relation Graph: ラベルノイズと外部データの識別のための統一フレームワーク
- Authors: Jang-Hyun Kim, Sangdoo Yun, Hyun Oh Song
- Abstract要約: 本稿では,データのリレーショナルグラフ構造に基づいてラベルエラーや外れ値データを検出するスケーラブルなアルゴリズムを提案する。
また,特徴埋め込み空間におけるデータポイントのコンテキスト情報を提供する可視化ツールも導入した。
提案手法は,検討対象のタスクすべてに対して最先端検出性能を達成し,大規模実世界のデータセットでその有効性を実証する。
- 参考スコア(独自算出の注目度): 29.99382991971724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnosing and cleaning data is a crucial step for building robust machine
learning systems. However, identifying problems within large-scale datasets
with real-world distributions is challenging due to the presence of complex
issues such as label errors, under-representation, and outliers. In this paper,
we propose a unified approach for identifying the problematic data by utilizing
a largely ignored source of information: a relational structure of data in the
feature-embedded space. To this end, we present scalable and effective
algorithms for detecting label errors and outlier data based on the relational
graph structure of data. We further introduce a visualization tool that
provides contextual information of a data point in the feature-embedded space,
serving as an effective tool for interactively diagnosing data. We evaluate the
label error and outlier/out-of-distribution (OOD) detection performances of our
approach on the large-scale image, speech, and language domain tasks, including
ImageNet, ESC-50, and MNLI. Our approach achieves state-of-the-art detection
performance on all tasks considered and demonstrates its effectiveness in
debugging large-scale real-world datasets across various domains.
- Abstract(参考訳): データの診断とクリーニングは、堅牢な機械学習システムを構築するための重要なステップである。
しかしながら、ラベルエラーや過剰表現、外れ値といった複雑な問題が存在するため、大規模なデータセット内の問題を特定することは難しい。
本稿では,主に無視される情報のソースである特徴埋め込み空間におけるデータの関係構造を利用して,問題データを特定する統一的な手法を提案する。
そこで本研究では,データの関係グラフ構造に基づいてラベル誤りや異常データを検出するスケーラブルで効果的なアルゴリズムを提案する。
さらに,特徴埋め込み空間におけるデータポイントの文脈情報を提供する可視化ツールを導入し,インタラクティブにデータ診断を行うための効果的なツールとして機能する。
我々は,画像Net,ESC-50,MNLIを含む大規模画像,音声,言語領域のタスクに対して,提案手法のラベル誤りとアウト・オブ・ディストリビューション(OOD)検出性能を評価する。
本手法は,検討中のすべてのタスクにおける最先端検出性能を達成し,様々なドメインにまたがる大規模実世界のデータセットのデバッグにおいてその効果を実証する。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
グラフデータ分析におけるグラフニューラルネットワーク(GNN)の出現は、モデルトレーニング中のデータ誤用に関する重要な懸念を引き起こしている。
既存の手法は、データ誤用検出または緩和のいずれかに対応しており、主にローカルGNNモデル用に設計されている。
本稿では,これらの課題に対処するため,GraphGuardという先駆的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-13T02:59:37Z) - ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A
Unified Neural Network Approach [39.211176955683285]
有向多重グラフを処理する新しいグラフニューラルネットワークモデルADAMMを提案する。
ADAMMは、教師なしの異常検出目的を通じてメタデータとグラフレベルの表現学習を融合する。
論文 参考訳(メタデータ) (2023-11-13T14:19:36Z) - ALEX: Towards Effective Graph Transfer Learning with Noisy Labels [11.115297917940829]
本稿では,グラフ伝達学習の課題に対処するため,バランスアライメントと情報認識試験(ALEX)と呼ばれる新しい手法を提案する。
ALEXはまず特異値分解を使用して、重要な構造的意味論を持つ異なるビューを生成し、堅牢なノード表現を提供する。
この基礎の上に構築され、複雑なマルチモーダル分布の暗黙的な領域アライメントのために、対向領域判別器が組み込まれている。
論文 参考訳(メタデータ) (2023-09-26T04:59:49Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - NetRCA: An Effective Network Fault Cause Localization Algorithm [22.88986905436378]
ネットワーク障害の根本原因の特定は、ネットワークの運用と保守に不可欠である。
この問題に対処するために,NetRCAという新しいアルゴリズムを提案する。
ICASSP 2022 AIOps Challengeの実際のデータセットで実験と分析が行われる。
論文 参考訳(メタデータ) (2022-02-23T02:03:35Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
グラフ異常検出のための自己教師付き学習法(SL-GAD)を提案する。
提案手法では,対象ノードに基づいて異なるコンテキストサブグラフを構築し,生成属性回帰とマルチビューコントラスト学習という2つのモジュールを用いて異常検出を行う。
提案手法は,6つのベンチマークデータセットに対して広範な実験を行い,提案手法が最先端の手法よりも大きなマージンで優れていることを示した。
論文 参考訳(メタデータ) (2021-08-23T02:15:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。