Plugin estimators for selective classification with out-of-distribution
detection
- URL: http://arxiv.org/abs/2301.12386v4
- Date: Mon, 24 Jul 2023 18:42:08 GMT
- Title: Plugin estimators for selective classification with out-of-distribution
detection
- Authors: Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum,
Sanjiv Kumar
- Abstract summary: Real-world classifiers can benefit from abstaining from predicting on samples where they have low confidence.
These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature.
Recent work on selective classification with OOD detection has argued for the unified study of these problems.
We propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches.
- Score: 67.28226919253214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world classifiers can benefit from the option of abstaining from
predicting on samples where they have low confidence. Such abstention is
particularly useful on samples which are close to the learned decision
boundary, or which are outliers with respect to the training sample. These
settings have been the subject of extensive but disjoint study in the selective
classification (SC) and out-of-distribution (OOD) detection literature. Recent
work on selective classification with OOD detection (SCOD) has argued for the
unified study of these problems; however, the formal underpinnings of this
problem are still nascent, and existing techniques are heuristic in nature. In
this paper, we propose new plugin estimators for SCOD that are theoretically
grounded, effective, and generalise existing approaches from the SC and OOD
detection literature. In the course of our analysis, we formally explicate how
na\"{i}ve use of existing SC and OOD detection baselines may be inadequate for
SCOD. We empirically demonstrate that our approaches yields competitive SC and
OOD detection performance compared to baselines from both literatures.
Related papers
- Recent Advances in OOD Detection: Problems and Approaches [40.27656150526273]
Out-of-distribution (OOD) detection aims to detect test samples outside the training category space.
We provide a discussion of the evaluation scenarios, a variety of applications, and several future research directions.
arXiv Detail & Related papers (2024-09-18T11:30:30Z) - Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
We aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR)
We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them.
We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR.
arXiv Detail & Related papers (2024-08-29T17:55:07Z) - Rethinking Out-of-Distribution Detection for Reinforcement Learning: Advancing Methods for Evaluation and Detection [3.7384109981836158]
We study the problem of out-of-distribution (OOD) detection in reinforcement learning (RL)
We propose a clarification of terminology for OOD detection in RL, which aligns it with the literature from other machine learning domains.
We present new benchmark scenarios for OOD detection, which introduce anomalies with temporal autocorrelation into different components of the agent-environment loop.
We find that DEXTER can reliably identify anomalies across benchmark scenarios, exhibiting superior performance compared to both state-of-the-art OOD detectors and high-dimensional changepoint detectors adopted from statistics.
arXiv Detail & Related papers (2024-04-10T15:39:49Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Large Class Separation is not what you need for Relational
Reasoning-based OOD Detection [12.578844450586]
Out-Of-Distribution (OOD) detection methods provide a solution by identifying semantic novelty.
Most of these methods leverage a learning stage on the known data, which means training (or fine-tuning) a model to capture the concept of normality.
A viable alternative is that of evaluating similarities in the embedding space produced by large pre-trained models without any further learning effort.
arXiv Detail & Related papers (2023-07-12T14:10:15Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - OpenOOD: Benchmarking Generalized Out-of-Distribution Detection [60.13300701826931]
Out-of-distribution (OOD) detection is vital to safety-critical machine learning applications.
The field currently lacks a unified, strictly formulated, and comprehensive benchmark.
We build a unified, well-structured called OpenOOD, which implements over 30 methods developed in relevant fields.
arXiv Detail & Related papers (2022-10-13T17:59:57Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.