Rethinking Out-of-Distribution Detection for Reinforcement Learning: Advancing Methods for Evaluation and Detection
- URL: http://arxiv.org/abs/2404.07099v1
- Date: Wed, 10 Apr 2024 15:39:49 GMT
- Title: Rethinking Out-of-Distribution Detection for Reinforcement Learning: Advancing Methods for Evaluation and Detection
- Authors: Linas Nasvytis, Kai Sandbrink, Jakob Foerster, Tim Franzmeyer, Christian Schroeder de Witt,
- Abstract summary: We study the problem of out-of-distribution (OOD) detection in reinforcement learning (RL)
We propose a clarification of terminology for OOD detection in RL, which aligns it with the literature from other machine learning domains.
We present new benchmark scenarios for OOD detection, which introduce anomalies with temporal autocorrelation into different components of the agent-environment loop.
We find that DEXTER can reliably identify anomalies across benchmark scenarios, exhibiting superior performance compared to both state-of-the-art OOD detectors and high-dimensional changepoint detectors adopted from statistics.
- Score: 3.7384109981836158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While reinforcement learning (RL) algorithms have been successfully applied across numerous sequential decision-making problems, their generalization to unforeseen testing environments remains a significant concern. In this paper, we study the problem of out-of-distribution (OOD) detection in RL, which focuses on identifying situations at test time that RL agents have not encountered in their training environments. We first propose a clarification of terminology for OOD detection in RL, which aligns it with the literature from other machine learning domains. We then present new benchmark scenarios for OOD detection, which introduce anomalies with temporal autocorrelation into different components of the agent-environment loop. We argue that such scenarios have been understudied in the current literature, despite their relevance to real-world situations. Confirming our theoretical predictions, our experimental results suggest that state-of-the-art OOD detectors are not able to identify such anomalies. To address this problem, we propose a novel method for OOD detection, which we call DEXTER (Detection via Extraction of Time Series Representations). By treating environment observations as time series data, DEXTER extracts salient time series features, and then leverages an ensemble of isolation forest algorithms to detect anomalies. We find that DEXTER can reliably identify anomalies across benchmark scenarios, exhibiting superior performance compared to both state-of-the-art OOD detectors and high-dimensional changepoint detectors adopted from statistics.
Related papers
- Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
We aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR)
We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them.
We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR.
arXiv Detail & Related papers (2024-08-29T17:55:07Z) - Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey [107.08019135783444]
We first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era.
Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD.
arXiv Detail & Related papers (2024-07-31T17:59:58Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
We present a training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs.
Our method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks.
arXiv Detail & Related papers (2024-07-23T12:28:59Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
Time series is one of the most challenging modalities in machine learning research.
OOD detection and generalization on time series tend to suffer due to its non-stationary property.
We propose DIVERSIFY, a framework for OOD detection and generalization on dynamic distributions of time series.
arXiv Detail & Related papers (2023-08-04T12:27:11Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - Plugin estimators for selective classification with out-of-distribution
detection [67.28226919253214]
Real-world classifiers can benefit from abstaining from predicting on samples where they have low confidence.
These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature.
Recent work on selective classification with OOD detection has argued for the unified study of these problems.
We propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches.
arXiv Detail & Related papers (2023-01-29T07:45:17Z) - Benchmark for Out-of-Distribution Detection in Deep Reinforcement
Learning [0.0]
Reinforcement Learning (RL) based solutions are being adopted in a variety of domains including robotics, health care and industrial automation.
Most focus is given to when these solutions work well, but they fail when presented with out of distribution inputs.
Out of distribution detection for RL is generally not well covered in the literature, and there is a lack of benchmarks for this task.
arXiv Detail & Related papers (2021-12-05T22:21:11Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems.
Several other problems, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD) are closely related to OOD detection.
We first present a unified framework called generalized OOD detection, which encompasses the five aforementioned problems.
arXiv Detail & Related papers (2021-10-21T17:59:41Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Algorithmic Frameworks for the Detection of High Density Anomalies [0.0]
High-density anomalies are deviant cases positioned in the most normal regions of the data space.
This study introduces several non-parametric algorithmic frameworks for unsupervised detection.
arXiv Detail & Related papers (2020-10-09T17:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.