論文の概要: 3D Object Detection in LiDAR Point Clouds using Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2301.12519v1
- Date: Sun, 29 Jan 2023 19:23:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 16:39:48.683312
- Title: 3D Object Detection in LiDAR Point Clouds using Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いたLiDAR点雲中の3次元物体検出
- Authors: Shreelakshmi C R, Surya S. Durbha, Gaganpreet Singh
- Abstract要約: 本研究では,3次元LiDAR点雲内の物体を学習し,識別するグラフニューラルネットワーク(GNN)に基づくフレームワークを提案する。
GNNは、グラフ学習の原理に基づいてパターンやオブジェクトを学習するディープラーニングのクラスである。
- 参考スコア(独自算出の注目度): 1.8369974607582582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LiDAR (Light Detection and Ranging) is an advanced active remote sensing
technique working on the principle of time of travel (ToT) for capturing highly
accurate 3D information of the surroundings. LiDAR has gained wide attention in
research and development with the LiDAR industry expected to reach 2.8 billion
$ by 2025. Although the LiDAR dataset is of rich density and high spatial
resolution, it is challenging to process LiDAR data due to its inherent 3D
geometry and massive volume. But such a high-resolution dataset possesses
immense potential in many applications and has great potential in 3D object
detection and recognition. In this research we propose Graph Neural Network
(GNN) based framework to learn and identify the objects in the 3D LiDAR point
clouds. GNNs are class of deep learning which learns the patterns and objects
based on the principle of graph learning which have shown success in various 3D
computer vision tasks.
- Abstract(参考訳): LiDAR(Light Detection and Ranging)は、旅行時間(ToT)の原理に基づいて、周囲の高精度な3D情報を収集する高度なリモートセンシング技術である。
LiDAR産業は2025年までに280億ドルに達すると予測されている。
LiDARデータセットは密度が豊富で空間解像度が高いが、その固有の3次元幾何学と巨大な体積のため、LiDARデータの処理は困難である。
しかし、このような高解像度データセットは多くのアプリケーションにおいて大きなポテンシャルを持ち、3Dオブジェクトの検出と認識において大きなポテンシャルを持っている。
本研究では,3次元LiDAR点雲内の物体を学習・識別するためのグラフニューラルネットワーク(GNN)ベースのフレームワークを提案する。
GNNは、様々な3Dコンピュータビジョンタスクで成功したグラフ学習の原理に基づいてパターンやオブジェクトを学習するディープラーニングのクラスである。
関連論文リスト
- Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
我々はOVM3D-Detと呼ばれる新しいオープン語彙単分子オブジェクト検出フレームワークを提案する。
OVM3D-Detは、入力または3Dバウンディングボックスを生成するために高精度のLiDARや3Dセンサーデータを必要としない。
オープンボキャブラリ2Dモデルと擬似LiDARを使用して、RGB画像に3Dオブジェクトを自動的にラベル付けし、オープンボキャブラリ単分子3D検出器の学習を促進する。
論文 参考訳(メタデータ) (2024-11-23T21:37:21Z) - STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
正確な3Dオブジェクト検出器をトレーニングするための鍵となる要件は、大量のLiDARベースのポイントクラウドデータが利用できることである。
本稿では,3次元物体検出装置のトレーニングにおけるラベル付けコストを大幅に削減する,統合されたアクティブな3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-04T20:45:33Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能することがわかった。
本研究は,3次元物体検出の高性能化のために,詳細な幾何学的モデリングが不可欠である,という一般的な直観に挑戦する。
論文 参考訳(メタデータ) (2023-05-08T17:59:14Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
本稿では,LiDAR信号からの空間情報を単分子3D検出器に導入するための簡易かつ効果的な手法を提案する。
得られたデータを用いて、ベースラインモデルと同じアーキテクチャで3D検出器をトレーニングする。
実験の結果,提案手法はベースラインモデルの性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-01-26T09:21:41Z) - 3D Visual Tracking Framework with Deep Learning for Asteroid Exploration [22.808962211830675]
本稿では,3次元追跡のための高精度かつリアルタイムな手法について検討する。
両眼ビデオシーケンス、深度マップ、様々な小惑星の点雲を含む、新しい大規模な3D小惑星追跡データセットが提示されている。
深層学習に基づく3DトラッキングフレームワークTrack3Dを提案する。このフレームワークは,2次元単分子トラッカーと,新しい軽量アモーダル軸整合バウンディングボックスネットワークであるA3BoxNetを備える。
論文 参考訳(メタデータ) (2021-11-21T04:14:45Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Active 3D Shape Reconstruction from Vision and Touch [66.08432412497443]
人間は、視覚と触覚を共同で利用して、活発な物体探索を通じて世界の3D理解を構築する。
3次元形状の再構成では、最新の進歩はRGB画像、深度マップ、触覚読影などの限られた感覚データの静的データセットに依存している。
1)高空間分解能視覚に基づく触覚センサを応用した3次元物体のアクティブタッチに活用した触覚シミュレータ,2)触覚やビジュオクティビティルを先導するメッシュベースの3次元形状再構成モデル,3)触覚やビジュオのいずれかを用いたデータ駆動型ソリューションのセットからなるシステムを導入する。
論文 参考訳(メタデータ) (2021-07-20T15:56:52Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z) - 3D3L: Deep Learned 3D Keypoint Detection and Description for LiDARs [25.73598441491818]
本稿では3D3Lの基盤として最先端の2D特徴ネットワークを使用し,LiDAR領域の画像の強度と深さを両立させる。
以上の結果から,lidarスキャン画像から抽出されたキーポイントとディスクリプタは,各ベンチマーク指標において最先端を上回っていた。
論文 参考訳(メタデータ) (2021-03-25T13:08:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。