論文の概要: A Deep Reinforcement Learning Framework for Optimizing Congestion
Control in Data Centers
- arxiv url: http://arxiv.org/abs/2301.12558v1
- Date: Sun, 29 Jan 2023 22:08:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 16:19:57.841618
- Title: A Deep Reinforcement Learning Framework for Optimizing Congestion
Control in Data Centers
- Title(参考訳): データセンターの混雑制御を最適化する深層強化学習フレームワーク
- Authors: Shiva Ketabi, Hongkai Chen, Haiwei Dong, Yashar Ganjali
- Abstract要約: 異なるネットワーク環境において高い性能を達成するために,様々な渋滞制御プロトコルが設計されている。
集中制御アクションをマシンに委譲する現代のオンライン学習ソリューションは、データセンターの厳格な時間スケールに適切に収束できない。
我々はマルチエージェント強化学習を利用して、データセンターのエンドホストにおける混雑制御パラメータを動的にチューニングするシステムを設計する。
- 参考スコア(独自算出の注目度): 2.310582065745938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Various congestion control protocols have been designed to achieve high
performance in different network environments. Modern online learning solutions
that delegate the congestion control actions to a machine cannot properly
converge in the stringent time scales of data centers. We leverage multiagent
reinforcement learning to design a system for dynamic tuning of congestion
control parameters at end-hosts in a data center. The system includes agents at
the end-hosts to monitor and report the network and traffic states, and agents
to run the reinforcement learning algorithm given the states. Based on the
state of the environment, the system generates congestion control parameters
that optimize network performance metrics such as throughput and latency. As a
case study, we examine BBR, an example of a prominent recently-developed
congestion control protocol. Our experiments demonstrate that the proposed
system has the potential to mitigate the problems of static parameters.
- Abstract(参考訳): 様々なネットワーク環境で高い性能を達成するために、様々な混雑制御プロトコルが設計されている。
集中制御アクションをマシンに委譲する現代のオンライン学習ソリューションは、データセンターの厳格な時間スケールに適切に収束できない。
我々はマルチエージェント強化学習を利用して、データセンターのエンドホストにおける混雑制御パラメータを動的にチューニングするシステムを設計する。
このシステムには、ネットワークとトラフィック状態を監視して報告するエージェントと、その状態に応じて強化学習アルゴリズムを実行するエージェントが含まれている。
環境の状態に基づいて、システムはスループットやレイテンシなどのネットワークパフォーマンスメトリクスを最適化する混雑制御パラメータを生成する。
本研究では,最近開発された渋滞制御プロトコルの例として,bbrについて検討する。
実験により,提案システムは静的パラメータの問題を軽減できる可能性が示された。
関連論文リスト
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
無線ネットワーク制御システム(Wireless Networked Control Systems, WNCS)は、ドローン群や自律ロボットなどのアプリケーションにおいて柔軟な制御を可能にする産業用4.0に必須である。
本稿では,マルチ状態マルコフブロックフェーディングチャネル上で限られた無線リソースを共有するセンサやアクチュエータを用いて,複数の制御ループ間の相関ダイナミクスを捕捉する実用的WNCSモデルを提案する。
本研究では,ハイブリッドな動作空間を効率的に処理し,通信制御の相関関係を捉え,疎域変数や浮動小数点制御の入力に拘わらず堅牢なトレーニングを確実にするDeep Reinforcement Learning (DRL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-15T06:28:21Z) - A Decentralized and Self-Adaptive Approach for Monitoring Volatile Edge Environments [40.96858640950632]
エッジのための分散自己適応監視システムであるDEMonを提案する。
提案システムは軽量でポータブルなコンテナベースシステムとして実装し,実験を通じて評価する。
その結果, エッジモニタリングの課題に対処するため, DEMonは効率的にモニタリング情報を拡散し, 回収することがわかった。
論文 参考訳(メタデータ) (2024-05-13T14:47:34Z) - ReACT: Reinforcement Learning for Controller Parametrization using
B-Spline Geometries [0.0]
本研究は,N次元B-スプライン測地(BSG)を用いた深部強化学習(DRL)を用いた新しいアプローチを提案する。
本稿では,操作条件に依存する複雑な振る舞いを持つシステムのクラスであるパラメータ変量システムの制御に焦点をあてる。
多数の動作条件に依存するコントローラパラメータをマッピングするために,BSGを導入し,適応処理をより効率的にする。
論文 参考訳(メタデータ) (2024-01-10T16:27:30Z) - Perimeter Control with Heterogeneous Metering Rates for Cordon Signals: A Physics-Regularized Multi-Agent Reinforcement Learning Approach [12.86346901414289]
過飽和環境下での都市道路網の制御に対処するための周辺制御(PC)戦略が提案されている。
本稿では,MARL(Multi-Agent Reinforcement Learning)に基づく交通信号制御フレームワークを活用し,PC問題を分解する。
MARLフレームワークの物理正則化手法は,分散コードン信号制御装置がグローバルネットワークの状態を認識していることを確実にするために提案される。
論文 参考訳(メタデータ) (2023-08-24T13:51:16Z) - Deep Learning for Wireless Networked Systems: a joint
Estimation-Control-Scheduling Approach [47.29474858956844]
ワイヤレスネットワーク制御システム(Wireless Networked Control System, WNCS)は、無線通信を介してセンサ、コントローラ、アクチュエータを接続する技術であり、産業用 4.0 時代において、高度にスケーラブルで低コストな制御システムの展開を可能にする技術である。
WNCSにおける制御と通信の密接な相互作用にもかかわらず、既存のほとんどの研究は分離設計アプローチを採用している。
モデルフリーデータとモデルベースデータの両方を利用する制御と最適化のための,DRLに基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-03T01:29:40Z) - Deep Reinforcement Learning for Wireless Scheduling in Distributed Networked Control [37.10638636086814]
完全分散無線制御システム(WNCS)の周波数チャネル数に制限のある結合アップリンクとダウンリンクのスケジューリング問題を考える。
深層強化学習(DRL)に基づくフレームワークを開発した。
DRLにおける大きなアクション空間の課題に対処するために,新しいアクション空間削減法とアクション埋め込み法を提案する。
論文 参考訳(メタデータ) (2021-09-26T11:27:12Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
分散コントローラを学習するグラフニューラルネットワーク(GNN)を用いた新しいフレームワークを提案する。
GNNは、自然分散アーキテクチャであり、優れたスケーラビリティと転送性を示すため、タスクに適している。
分散コントローラの学習におけるGNNの可能性を説明するために、群れとマルチエージェントパス計画の問題を検討する。
論文 参考訳(メタデータ) (2020-12-29T18:59:14Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
本稿では,データ収集ミッションを定義するシナリオパラメータの深い変化に適応できるマルチエージェント強化学習(MARL)手法を提案する。
提案するネットワークアーキテクチャにより,データ収集タスクを慎重に分割することで,エージェントが効果的に協調できることを示す。
論文 参考訳(メタデータ) (2020-10-23T14:59:30Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。