Risk-Averse Model Uncertainty for Distributionally Robust Safe
Reinforcement Learning
- URL: http://arxiv.org/abs/2301.12593v2
- Date: Thu, 26 Oct 2023 17:07:59 GMT
- Title: Risk-Averse Model Uncertainty for Distributionally Robust Safe
Reinforcement Learning
- Authors: James Queeney and Mouhacine Benosman
- Abstract summary: We introduce a deep reinforcement learning framework for safe decision making in uncertain environments.
We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems.
In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.
- Score: 3.9821399546174825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world domains require safe decision making in uncertain
environments. In this work, we introduce a deep reinforcement learning
framework for approaching this important problem. We consider a distribution
over transition models, and apply a risk-averse perspective towards model
uncertainty through the use of coherent distortion risk measures. We provide
robustness guarantees for this framework by showing it is equivalent to a
specific class of distributionally robust safe reinforcement learning problems.
Unlike existing approaches to robustness in deep reinforcement learning,
however, our formulation does not involve minimax optimization. This leads to
an efficient, model-free implementation of our approach that only requires
standard data collection from a single training environment. In experiments on
continuous control tasks with safety constraints, we demonstrate that our
framework produces robust performance and safety at deployment time across a
range of perturbed test environments.
Related papers
- Diffusion Models for Offline Multi-agent Reinforcement Learning with Safety Constraints [0.0]
We introduce an innovative framework integrating diffusion models within the Multi-agent Reinforcement Learning paradigm.
This approach notably enhances the safety of actions taken by multiple agents through risk mitigation while modeling coordinated action.
arXiv Detail & Related papers (2024-06-30T16:05:31Z) - Leveraging Approximate Model-based Shielding for Probabilistic Safety
Guarantees in Continuous Environments [63.053364805943026]
We extend the approximate model-based shielding framework to the continuous setting.
In particular we use Safety Gym as our test-bed, allowing for a more direct comparison of AMBS with popular constrained RL algorithms.
arXiv Detail & Related papers (2024-02-01T17:55:08Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - Mind the Uncertainty: Risk-Aware and Actively Exploring Model-Based
Reinforcement Learning [26.497229327357935]
We introduce a simple but effective method for managing risk in model-based reinforcement learning with trajectory sampling.
Experiments indicate that the separation of uncertainties is essential to performing well with data-driven approaches in uncertain and safety-critical control environments.
arXiv Detail & Related papers (2023-09-11T16:10:58Z) - SafeDiffuser: Safe Planning with Diffusion Probabilistic Models [97.80042457099718]
Diffusion model-based approaches have shown promise in data-driven planning, but there are no safety guarantees.
We propose a new method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy specifications.
We test our method on a series of safe planning tasks, including maze path generation, legged robot locomotion, and 3D space manipulation.
arXiv Detail & Related papers (2023-05-31T19:38:12Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement learning (RL) has shown a promising performance in learning optimal policies for a variety of sequential decision-making tasks.
In many real-world RL problems, besides optimizing the main objectives, the agent is expected to satisfy a certain level of safety.
We propose a Lyapunov-based uncertainty-aware safe RL model to address these limitations.
arXiv Detail & Related papers (2021-07-29T13:08:15Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Context-Aware Safe Reinforcement Learning for Non-Stationary
Environments [24.75527261989899]
Safety is a critical concern when deploying reinforcement learning agents for realistic tasks.
We propose the context-aware safe reinforcement learning (CASRL) method to realize safe adaptation in non-stationary environments.
Results show that the proposed algorithm significantly outperforms existing baselines in terms of safety and robustness.
arXiv Detail & Related papers (2021-01-02T23:52:22Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Improving Robustness via Risk Averse Distributional Reinforcement
Learning [13.467017642143581]
Robustness is critical when the policies are trained in simulations instead of real world environment.
We propose a risk-aware algorithm to learn robust policies in order to bridge the gap between simulation training and real-world implementation.
arXiv Detail & Related papers (2020-05-01T20:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.