Diffusion Models for Offline Multi-agent Reinforcement Learning with Safety Constraints
- URL: http://arxiv.org/abs/2407.00741v6
- Date: Sun, 29 Sep 2024 04:24:11 GMT
- Title: Diffusion Models for Offline Multi-agent Reinforcement Learning with Safety Constraints
- Authors: Jianuo Huang,
- Abstract summary: We introduce an innovative framework integrating diffusion models within the Multi-agent Reinforcement Learning paradigm.
This approach notably enhances the safety of actions taken by multiple agents through risk mitigation while modeling coordinated action.
- Score: 0.0
- License:
- Abstract: In recent advancements in Multi-agent Reinforcement Learning (MARL), its application has extended to various safety-critical scenarios. However, most methods focus on online learning, which presents substantial risks when deployed in real-world settings. Addressing this challenge, we introduce an innovative framework integrating diffusion models within the MARL paradigm. This approach notably enhances the safety of actions taken by multiple agents through risk mitigation while modeling coordinated action. Our framework is grounded in the Centralized Training with Decentralized Execution (CTDE) architecture, augmented by a Diffusion Model for prediction trajectory generation. Additionally, we incorporate a specialized algorithm to further ensure operational safety. We evaluate our model against baselines on the DSRL benchmark. Experiment results demonstrate that our model not only adheres to stringent safety constraints but also achieves superior performance compared to existing methodologies. This underscores the potential of our approach in advancing the safety and efficacy of MARL in real-world applications.
Related papers
- FlickerFusion: Intra-trajectory Domain Generalizing Multi-Agent RL [19.236153474365747]
Existing MARL approaches often rely on the restrictive assumption that the number of entities remains constant between training and inference.
In this paper, we tackle the challenge of intra-trajectory dynamic entity composition under zero-shot out-of-domain (OOD) generalization.
We propose FlickerFusion, a novel OOD generalization method that acts as a universally applicable augmentation technique for MARL backbone methods.
arXiv Detail & Related papers (2024-10-21T10:57:45Z) - A Formal Framework for Assessing and Mitigating Emergent Security Risks in Generative AI Models: Bridging Theory and Dynamic Risk Mitigation [0.3413711585591077]
As generative AI systems, including large language models (LLMs) and diffusion models, advance rapidly, their growing adoption has led to new and complex security risks.
This paper introduces a novel formal framework for categorizing and mitigating these emergent security risks.
We identify previously under-explored risks, including latent space exploitation, multi-modal cross-attack vectors, and feedback-loop-induced model degradation.
arXiv Detail & Related papers (2024-10-15T02:51:32Z) - Active Learning for Robust and Representative LLM Generation in Safety-Critical Scenarios [32.16984263644299]
Large Language Models (LLMs) can generate valuable data for safety measures, but often exhibit distributional biases.
We propose a novel framework that integrates active learning with clustering to guide LLM generation.
Our results show that the proposed framework produces a more representative set of safety scenarios without requiring prior knowledge of the underlying data distribution.
arXiv Detail & Related papers (2024-10-14T21:48:14Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - DeepSafeMPC: Deep Learning-Based Model Predictive Control for Safe
Multi-Agent Reinforcement Learning [11.407941376728258]
We propose a novel method called Deep Learning-Based Model Predictive Control for Safe Multi-Agent Reinforcement Learning (DeepSafeMPC)
The key insight of DeepSafeMPC is leveraging a entralized deep learning model to well predict environmental dynamics.
We demonstrate the effectiveness of our approach using the Safe Multi-agent MuJoCo environment.
arXiv Detail & Related papers (2024-03-11T03:17:33Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - SafeDiffuser: Safe Planning with Diffusion Probabilistic Models [97.80042457099718]
Diffusion model-based approaches have shown promise in data-driven planning, but there are no safety guarantees.
We propose a new method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy specifications.
We test our method on a series of safe planning tasks, including maze path generation, legged robot locomotion, and 3D space manipulation.
arXiv Detail & Related papers (2023-05-31T19:38:12Z) - Risk-Averse Model Uncertainty for Distributionally Robust Safe
Reinforcement Learning [3.9821399546174825]
We introduce a deep reinforcement learning framework for safe decision making in uncertain environments.
We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems.
In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.
arXiv Detail & Related papers (2023-01-30T00:37:06Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Constrained Policy Optimization via Bayesian World Models [79.0077602277004]
LAMBDA is a model-based approach for policy optimization in safety critical tasks modeled via constrained Markov decision processes.
We demonstrate LAMBDA's state of the art performance on the Safety-Gym benchmark suite in terms of sample efficiency and constraint violation.
arXiv Detail & Related papers (2022-01-24T17:02:22Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.