論文の概要: Dynamic Storyboard Generation in an Engine-based Virtual Environment for
Video Production
- arxiv url: http://arxiv.org/abs/2301.12688v2
- Date: Tue, 31 Jan 2023 03:02:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 12:38:01.296858
- Title: Dynamic Storyboard Generation in an Engine-based Virtual Environment for
Video Production
- Title(参考訳): ビデオ制作のためのエンジンベース仮想環境における動的ストーリーボード生成
- Authors: Anyi Rao, Xuekun Jiang, Yuwei Guo, Linning Xu, Lei Yang, Libiao Jin,
Dahua Lin, Bo Dai
- Abstract要約: VDS(Virtual Dynamic Storyboard)を導入し,仮想環境でのストーリーボード撮影を可能にする。
形式化されたストーリースクリプトとカメラスクリプトが入力として与えられたら、いくつかのキャラクターアニメーションとカメラムーブメント提案を生成する。
候補から高品質なダイナミックなストーリーボードをピックアップするために,プロのマニュアル作成データから学習したショット品質基準に基づいて,ショットランキング判別器を装備する。
- 参考スコア(独自算出の注目度): 92.14891282042764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amateurs working on mini-films and short-form videos usually spend lots of
time and effort on the multi-round complicated process of setting and adjusting
scenes, plots, and cameras to deliver satisfying video shots. We present
Virtual Dynamic Storyboard (VDS) to allow users storyboarding shots in virtual
environments, where the filming staff can easily test the settings of shots
before the actual filming. VDS runs on a "propose-simulate-discriminate" mode:
Given a formatted story script and a camera script as input, it generates
several character animation and camera movement proposals following predefined
story and cinematic rules to allow an off-the-shelf simulation engine to render
videos. To pick up the top-quality dynamic storyboard from the candidates, we
equip it with a shot ranking discriminator based on shot quality criteria
learned from professional manual-created data. VDS is comprehensively validated
via extensive experiments and user studies, demonstrating its efficiency,
effectiveness, and great potential in assisting amateur video production.
- Abstract(参考訳): ミニフィルムやショートフォームビデオに取り組んでいるアマチュアは通常、シーン、プロット、カメラの設定と調整の複雑なプロセスに多くの時間と労力を費やし、満足のいくビデオショットを提供する。
撮影スタッフが実際の撮影前に簡単に撮影設定をテストできる仮想環境でのストーリーボード撮影を可能にするために,仮想動的ストーリーボード(vds)を提案する。
フォーマットされたストーリースクリプトとカメラスクリプトが入力として与えられると、事前に定義されたストーリーとシネマティックルールに従って複数のキャラクターアニメーションとカメラムーブメントの提案を生成し、オフザシェルフシミュレーションエンジンでビデオをレンダリングする。
候補から高品質なダイナミックなストーリーボードをピックアップするために,プロのマニュアル作成データから学習したショット品質基準に基づいて,ショットランキング判別器を装備する。
vdsは広範囲な実験とユーザー研究を通じて包括的に検証され、その効率性、有効性、アマチュアビデオ制作を支援する大きな可能性を示す。
関連論文リスト
- Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation [4.147294190096431]
視覚大言語モデル(VLM)エージェントの協調に基づく自動合成ビデオ生成パイプラインを提案する。
ビデオの自然言語記述が与えられた後、複数のVLMエージェントが生成パイプラインの様々なプロセスを自動指揮する。
生成したビデオは、ビデオ品質と命令追従性能の5つの指標において、商用ビデオ生成モデルよりも優れた品質を示す。
論文 参考訳(メタデータ) (2024-08-19T23:31:02Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
ビデオ仮想トライオンは、衣料品のアイデンティティを維持し、ソースビデオにおける人のポーズと身体の形に適応する現実的なシーケンスを生成することを目的としている。
従来の画像ベースの手法は、ワープとブレンディングに依存しており、複雑な人間の動きや閉塞に苦しむ。
衣料品の説明や人間の動きを条件とした映像生成のプロセスとして,映像試行を再認識する。
私たちのソリューションであるWildVidFitは、画像ベースで制御された拡散モデルを用いて、一段階の合理化を図っている。
論文 参考訳(メタデータ) (2024-07-15T11:21:03Z) - Image Conductor: Precision Control for Interactive Video Synthesis [90.2353794019393]
映画製作とアニメーション制作は、しばしばカメラの遷移と物体の動きを調整するための洗練された技術を必要とする。
イメージコンダクタ(Image Conductor)は、カメラトランジションとオブジェクトの動きを正確に制御し、単一の画像からビデオアセットを生成する方法である。
論文 参考訳(メタデータ) (2024-06-21T17:55:05Z) - Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis [43.02778060969546]
制御可能な単分子動的ビュー合成パイプラインを提案する。
我々のモデルは入力として深度を必要としないし、明示的に3次元シーン形状をモデル化しない。
私たちのフレームワークは、リッチな動的シーン理解、ロボット工学の知覚、バーチャルリアリティのためのインタラクティブな3Dビデオ視聴体験において、強力なアプリケーションをアンロックできる可能性があると考えています。
論文 参考訳(メタデータ) (2024-05-23T17:59:52Z) - Cinematic Behavior Transfer via NeRF-based Differentiable Filming [63.1622492808519]
既存のSLAM手法は動的シーンの制限に直面し、人間のポーズ推定はしばしば2次元投影に焦点を当てる。
まず,逆撮影行動推定手法を提案する。
次に,新しい2Dビデオや3D仮想環境に様々な撮影タイプを転送できる映像転送パイプラインを導入する。
論文 参考訳(メタデータ) (2023-11-29T15:56:58Z) - MovieFactory: Automatic Movie Creation from Text using Large Generative
Models for Language and Images [92.13079696503803]
映画制作のためのフレームワークであるMovieFactory(3072$times$1280)、映画スタイル(マルチシーン)、マルチモーダル(サウンド)映画について紹介する。
本手法は,簡単なテキスト入力を用いて,スムーズなトランジションでキャプティベーション映画を制作することを可能にする。
論文 参考訳(メタデータ) (2023-06-12T17:31:23Z) - Sampling Based Scene-Space Video Processing [89.49726406622842]
ビデオ処理のための新しいサンプリングベースのフレームワークを提案する。
奥行きのミスやカメラのポーズ推定がある場合、高品質なシーン空間ビデオ効果を可能にする。
カジュアルにキャプチャーされた、手持ちの、動く、圧縮された、モノラルなビデオの結果を提示する。
論文 参考訳(メタデータ) (2021-02-05T05:55:04Z) - Batteries, camera, action! Learning a semantic control space for
expressive robot cinematography [15.895161373307378]
我々は,意味空間における複雑なカメラ位置決めパラメータの編集を可能にする,データ駆動型フレームワークを開発した。
まず,写真実写シミュレータにおいて,多様な撮影範囲を持つ映像クリップのデータベースを作成する。
クラウドソーシングフレームワークには何百人もの参加者が参加して,各クリップのセマンティック記述子セットのスコアを取得しています。
論文 参考訳(メタデータ) (2020-11-19T21:56:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。