論文の概要: Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation
- arxiv url: http://arxiv.org/abs/2408.10453v1
- Date: Mon, 19 Aug 2024 23:31:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 17:33:21.600269
- Title: Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation
- Title(参考訳): Kubrick: 合成ビデオ生成のためのマルチモーダルエージェントコラボレーション
- Authors: Liu He, Yizhi Song, Hejun Huang, Daniel Aliaga, Xin Zhou,
- Abstract要約: 視覚大言語モデル(VLM)エージェントの協調に基づく自動合成ビデオ生成パイプラインを提案する。
ビデオの自然言語記述が与えられた後、複数のVLMエージェントが生成パイプラインの様々なプロセスを自動指揮する。
生成したビデオは、ビデオ品質と命令追従性能の5つの指標において、商用ビデオ生成モデルよりも優れた品質を示す。
- 参考スコア(独自算出の注目度): 4.147294190096431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-video generation has been dominated by end-to-end diffusion-based or autoregressive models. On one hand, those novel models provide plausible versatility, but they are criticized for physical correctness, shading and illumination, camera motion, and temporal consistency. On the other hand, film industry relies on manually-edited Computer-Generated Imagery (CGI) using 3D modeling software. Human-directed 3D synthetic videos and animations address the aforementioned shortcomings, but it is extremely tedious and requires tight collaboration between movie makers and 3D rendering experts. In this paper, we introduce an automatic synthetic video generation pipeline based on Vision Large Language Model (VLM) agent collaborations. Given a natural language description of a video, multiple VLM agents auto-direct various processes of the generation pipeline. They cooperate to create Blender scripts which render a video that best aligns with the given description. Based on film making inspiration and augmented with Blender-based movie making knowledge, the Director agent decomposes the input text-based video description into sub-processes. For each sub-process, the Programmer agent produces Python-based Blender scripts based on customized function composing and API calling. Then, the Reviewer agent, augmented with knowledge of video reviewing, character motion coordinates, and intermediate screenshots uses its compositional reasoning ability to provide feedback to the Programmer agent. The Programmer agent iteratively improves the scripts to yield the best overall video outcome. Our generated videos show better quality than commercial video generation models in 5 metrics on video quality and instruction-following performance. Moreover, our framework outperforms other approaches in a comprehensive user study on quality, consistency, and rationality.
- Abstract(参考訳): テキスト・ツー・ビデオ生成は、エンドツーエンドの拡散ベースまたは自己回帰モデルによって支配されている。
一方、これらの新しいモデルは、もっともらしい汎用性を提供するが、物理的正しさ、陰影と照明、カメラモーション、時間的一貫性で批判されている。
一方,映画産業は3Dモデリングソフトウェアを用いた手作業によるCGI(Computer-Generated Imagery)に頼っている。
人間の監督による3D合成ビデオとアニメーションは、前述の欠点に対処するが、非常に面倒であり、映画製作者と3Dレンダリングの専門家との密接なコラボレーションを必要としている。
本稿では,視覚大言語モデル(VLM)エージェントの協調に基づく自動合成ビデオ生成パイプラインを提案する。
ビデオの自然言語記述が与えられた後、複数のVLMエージェントが生成パイプラインの様々なプロセスを自動指揮する。
彼らはBlenderスクリプトの作成に協力し、与えられた記述に最も適したビデオをレンダリングする。
フィルム作成インスピレーションに基づき、Blenderベースの映画制作知識を付加し、インプットテキストベースの映像記述をサブプロセスに分解する。
サブプロセスごとに、Programmerエージェントは、カスタマイズされた関数の合成とAPI呼び出しに基づいて、PythonベースのBlenderスクリプトを生成する。
次に、映像レビュー、キャラクタ動作座標、中間スクリーンショットの知識を付加したレビューエージェントは、その構成推論能力を使用して、プログラマエージェントにフィードバックを提供する。
Programmerエージェントは、スクリプトを反復的に改善し、最高のビデオ結果を得る。
生成したビデオは、ビデオ品質と命令追従性能の5つの指標において、商用ビデオ生成モデルよりも優れた品質を示す。
さらに、我々のフレームワークは、品質、一貫性、合理性に関する包括的なユーザスタディにおいて、他のアプローチよりも優れています。
関連論文リスト
- StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration [88.94832383850533]
CSVG(Customized Storytelling Video Generation)のためのマルチエージェントフレームワークを提案する。
StoryAgentはCSVGを特殊エージェントに割り当てられた個別のサブタスクに分解し、プロの制作プロセスを反映する。
具体的には、撮影時間内整合性を高めるために、カスタマイズされたイメージ・ツー・ビデオ(I2V)手法であるLoRA-BEを導入する。
コントリビューションには、ビデオ生成タスクのための汎用フレームワークであるStoryAgentの導入や、プロタゴニストの一貫性を維持するための新しい技術が含まれている。
論文 参考訳(メタデータ) (2024-11-07T18:00:33Z) - Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models [54.35214051961381]
3Dメッシュはコンピュータビジョンとグラフィックスにおいて、アニメーションの効率と映画、ゲーム、AR、VRにおける最小限のメモリ使用のために広く利用されている。
しかし、メッシュのための時間的一貫性と現実的なテクスチャを作成することは、プロのアーティストにとって労働集約的だ。
本稿では、メッシュ配列から固有の幾何学とビデオ拡散モデルを統合することで、一貫したテクスチャを生成する3Dテクスチャシーケンスを提案する。
論文 参考訳(メタデータ) (2024-10-14T17:59:59Z) - Anim-Director: A Large Multimodal Model Powered Agent for Controllable Animation Video Generation [36.46957675498949]
Anim-Directorは、自律的なアニメーション作成エージェントである。
LMMと生成AIツールの高度な理解と推論能力を活用する。
プロセス全体は、手作業による介入なしに、特に自律的である。
論文 参考訳(メタデータ) (2024-08-19T08:27:31Z) - Reframe Anything: LLM Agent for Open World Video Reframing [0.8424099022563256]
ビデオリフレーミングのためのビジュアルコンテンツを再構成するAIベースのエージェントであるReframe Any Video Agent (RAVA)を紹介する。
RAVAは、ユーザーの指示やビデオコンテンツを解釈する知覚、アスペクト比やフレーミング戦略を決定する計画、最終映像を作成するための編集ツールを呼び出す実行の3段階からなる。
我々の実験は、AIを利用したビデオ編集ツールとしての可能性を実証し、ビデオの有能なオブジェクト検出と現実世界のリフレーミングタスクにおけるRAVAの有効性を検証した。
論文 参考訳(メタデータ) (2024-03-10T03:29:56Z) - Generative Rendering: Controllable 4D-Guided Video Generation with 2D
Diffusion Models [40.71940056121056]
本稿では,動的3次元メッシュの制御可能性と,新しい拡散モデルの表現性と編集性を組み合わせた新しいアプローチを提案する。
本手法は,トリグアセットのアニメーションやカメラパスの変更によって,動きを得られる様々な例について実証する。
論文 参考訳(メタデータ) (2023-12-03T14:17:11Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
本稿では、生成遷移と予測に焦点をあてた、短時間から長期のビデオ拡散モデルSEINEを提案する。
テキスト記述に基づく遷移を自動的に生成するランダムマスクビデオ拡散モデルを提案する。
我々のモデルは、コヒーレンスと視覚的品質を保証するトランジションビデオを生成する。
論文 参考訳(メタデータ) (2023-10-31T17:58:17Z) - Dreamix: Video Diffusion Models are General Video Editors [22.127604561922897]
テキスト駆動画像とビデオ拡散モデルは最近、前例のない世代のリアリズムを達成した。
一般的なビデオのテキストベースの動きと外観編集を行うことができる最初の拡散ベース手法を提案する。
論文 参考訳(メタデータ) (2023-02-02T18:58:58Z) - Render In-between: Motion Guided Video Synthesis for Action
Interpolation [53.43607872972194]
本研究では、リアルな人間の動きと外観を生成できる動き誘導型フレームアップサンプリングフレームワークを提案する。
大規模モーションキャプチャーデータセットを活用することにより、フレーム間の非線形骨格運動を推定するために、新しいモーションモデルが訓練される。
私たちのパイプラインでは、低フレームレートのビデオと不自由な人間のモーションデータしか必要としませんが、トレーニングには高フレームレートのビデオは必要ありません。
論文 参考訳(メタデータ) (2021-11-01T15:32:51Z) - A Good Image Generator Is What You Need for High-Resolution Video
Synthesis [73.82857768949651]
現代画像生成装置を用いて高解像度映像のレンダリングを行うフレームワークを提案する。
我々は,映像合成問題を,予め訓練された固定された画像生成装置の潜時空間における軌跡の発見とみなす。
本稿では,コンテンツや動きが絡み合っている所望の軌跡を検出するモーションジェネレータを提案する。
論文 参考訳(メタデータ) (2021-04-30T15:38:41Z) - Human Mesh Recovery from Multiple Shots [85.18244937708356]
疑似地上真理3Dヒューマンメッシュを用いた長期シーケンスの3次元再構築とマイニングの改善のためのフレームワークを提案する。
得られたデータは,様々なメッシュ回復モデルのトレーニングに有用であることを示す。
編集メディアの大規模なライブラリーから3Dコンテンツを処理・分析するための扉を開くツールを開発した。
論文 参考訳(メタデータ) (2020-12-17T18:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。