Ensemble-learning variational shallow-circuit quantum classifiers
- URL: http://arxiv.org/abs/2301.12707v1
- Date: Mon, 30 Jan 2023 07:26:35 GMT
- Title: Ensemble-learning variational shallow-circuit quantum classifiers
- Authors: Qingyu Li, Yuhan Huang, Xiaokai Hou, Ying Li, Xiaoting Wang, Abolfazl
Bayat
- Abstract summary: We propose two ensemble-learning classification methods, namely bootstrap aggregating and adaptive boosting.
The protocols have been exemplified for classical handwriting digits as well as quantum phase discrimination of a symmetry-protected topological Hamiltonian.
- Score: 4.104704267247209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classification is one of the main applications of supervised learning. Recent
advancement in developing quantum computers has opened a new possibility for
machine learning on such machines. However, due to the noisy performance of
near-term quantum computers, we desire an approach for solving classification
problems with only shallow circuits. Here, we propose two ensemble-learning
classification methods, namely bootstrap aggregating and adaptive boosting,
which can significantly enhance the performance of variational quantum
classifiers for both classical and quantum datasets. The idea is to combine
several weak classifiers, each implemented on a shallow noisy quantum circuit,
to make a strong one with high accuracy. While both of our protocols
substantially outperform error-mitigated primitive classifiers, the adaptive
boosting shows better performance than the bootstrap aggregating. In addition,
its training error decays exponentially with the number of classifiers, leading
to a favorable complexity for practical realization. The protocols have been
exemplified for classical handwriting digits as well as quantum phase
discrimination of a symmetry-protected topological Hamiltonian.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Supervised Learning Guarantee for Quantum AdaBoost [7.473180902609473]
In the noisy intermediate-scale quantum (NISQ) era, variational quantum algorithms are constrained due to a limited number of qubits and the shallow depth of quantum circuits.
In this paper, we theoretically establish and numerically verify a learning guarantee for quantum adaptive boosting (AdaBoost)
Our work indicates that in the current NISQ era, introducing appropriate ensemble methods is particularly valuable in improving the performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-02-04T07:18:44Z) - Ensembles of Quantum Classifiers [0.0]
A viable approach for the execution of quantum classification algorithms is the introduction of the ensemble methods.
In this work, we present an implementation and an empirical evaluation of ensembles of quantum classifiers for binary classification.
arXiv Detail & Related papers (2023-11-16T10:27:25Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - A hybrid quantum-classical classifier based on branching multi-scale
entanglement renormalization ansatz [5.548873288570182]
This paper proposes a quantum semi-supervised classifier based on label propagation.
Considering the difficulty of graph construction, we develop a variational quantum label propagation (VQLP) method.
In this method, a locally parameterized quantum circuit is created to reduce the parameters required in the optimization.
arXiv Detail & Related papers (2023-03-14T13:46:45Z) - Classical Ensembles of Single-Qubit Quantum Variational Circuits for
Classification [0.0]
Quantumally universal multi-feature (QAUM) encoding architecture was recently introduced and showed improved expressivity and performance in classifying pulsar stars.
This work reports on the design, implementation, and evaluation of ensembles of single-qubit QAUM classifiers using classical bagging and boosting techniques.
arXiv Detail & Related papers (2023-02-06T17:51:47Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification.
Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets.
arXiv Detail & Related papers (2022-02-17T09:55:21Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.