Supervised Learning Guarantee for Quantum AdaBoost
- URL: http://arxiv.org/abs/2402.02376v2
- Date: Sat, 02 Nov 2024 06:02:37 GMT
- Title: Supervised Learning Guarantee for Quantum AdaBoost
- Authors: Yabo Wang, Xin Wang, Bo Qi, Daoyi Dong,
- Abstract summary: In the noisy intermediate-scale quantum (NISQ) era, variational quantum algorithms are constrained due to a limited number of qubits and the shallow depth of quantum circuits.
In this paper, we theoretically establish and numerically verify a learning guarantee for quantum adaptive boosting (AdaBoost)
Our work indicates that in the current NISQ era, introducing appropriate ensemble methods is particularly valuable in improving the performance of quantum machine learning algorithms.
- Score: 7.473180902609473
- License:
- Abstract: In the noisy intermediate-scale quantum (NISQ) era, the capabilities of variational quantum algorithms are greatly constrained due to a limited number of qubits and the shallow depth of quantum circuits. We may view these variational quantum algorithms as weak learners in supervised learning. Ensemble methods are general approaches to combining weak learners to construct a strong one in machine learning. In this paper, by focusing on classification, we theoretically establish and numerically verify a learning guarantee for quantum adaptive boosting (AdaBoost). The supervised-learning risk bound describes how the prediction error of quantum AdaBoost on binary classification decreases as the number of boosting rounds and sample size increase. We further empirically demonstrate the advantages of quantum AdaBoost by focusing on a 4-class classification. The quantum AdaBoost not only outperforms several other ensemble methods, but in the presence of noise it can also surpass the ideally noiseless but unboosted primitive classifier after only a few boosting rounds. Our work indicates that in the current NISQ era, introducing appropriate ensemble methods is particularly valuable in improving the performance of quantum machine learning algorithms.
Related papers
- Quantum machine learning for multiclass classification beyond kernel methods [21.23851138896271]
We propose a quantum algorithm that demonstrates that quantum kernel methods enhance the efficiency of multiclass classification in real-world applications.
The results from quantum simulations reveal that the quantum algorithm outperforms its classical counterpart in handling six real-world classification problems.
arXiv Detail & Related papers (2024-11-05T08:58:30Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Ensemble-learning variational shallow-circuit quantum classifiers [4.104704267247209]
We propose two ensemble-learning classification methods, namely bootstrap aggregating and adaptive boosting.
The protocols have been exemplified for classical handwriting digits as well as quantum phase discrimination of a symmetry-protected topological Hamiltonian.
arXiv Detail & Related papers (2023-01-30T07:26:35Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - Improving Quantum Classifier Performance in NISQ Computers by Voting
Strategy from Ensemble Learning [9.257859576573942]
Large error rates occur in quantum algorithms due to quantum decoherence and imprecision of quantum gates.
In this study, we suggest that ensemble quantum classifiers be optimized with plurality voting.
arXiv Detail & Related papers (2022-10-04T14:59:58Z) - Recent advances for quantum classifiers [2.459525036555352]
We will review a number of quantum classification algorithms, including quantum support vector machine, quantum kernel methods, quantum decision tree, and quantum nearest neighbor algorithm.
We will then introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.