論文の概要: Efficient Node Selection in Private Personalized Decentralized Learning
- arxiv url: http://arxiv.org/abs/2301.12755v2
- Date: Mon, 15 Jan 2024 15:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 03:22:37.152656
- Title: Efficient Node Selection in Private Personalized Decentralized Learning
- Title(参考訳): 個人個別分散学習における効率的なノード選択
- Authors: Edvin Listo Zec, Johan \"Ostman, Olof Mogren, Daniel Gillblad
- Abstract要約: ノードのプライバシを保護するために,プライベート・パーソナライズド・デカライズド・ラーニング(PPDL)を提案する。
PPDLは、セキュアアグリゲーションと相関した対向多武装帯域最適化を組み合わせたものである。
PPDLは標準ベンチマークのモデル性能において従来の非プライベートな手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.7784910521656654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized decentralized learning is a promising paradigm for distributed
learning, enabling each node to train a local model on its own data and
collaborate with other nodes to improve without sharing any data. However, this
approach poses significant privacy risks, as nodes may inadvertently disclose
sensitive information about their data or preferences through their
collaboration choices. In this paper, we propose Private Personalized
Decentralized Learning (PPDL), a novel approach that combines secure
aggregation and correlated adversarial multi-armed bandit optimization to
protect node privacy while facilitating efficient node selection. By leveraging
dependencies between different arms, represented by potential collaborators, we
demonstrate that PPDL can effectively identify suitable collaborators solely
based on aggregated models. Additionally, we show that PPDL surpasses previous
non-private methods in model performance on standard benchmarks under label and
covariate shift scenarios.
- Abstract(参考訳): パーソナライズされた分散学習は分散学習にとって有望なパラダイムであり、各ノードが自身のデータ上でローカルモデルをトレーニングし、データを共有せずに他のノードと協調して改善することができる。
しかしこのアプローチは、ノードが自分たちのデータや好みに関する機密情報を、コラボレーションの選択を通じて不注意に開示する可能性があるため、重大なプライバシーリスクを引き起こす。
本稿では,ノードのプライバシーを保護し,効率的なノード選択を容易にするために,セキュアなアグリゲーションと相関する多腕バンディット最適化を組み合わせた新しいアプローチであるプライベートパーソナライズド分散学習(PPDL)を提案する。
協力者候補に代表される異なるアーム間の依存関係を利用することで,ppdlは,集約モデルのみに基づいて,適切な協調者を効果的に識別できることを実証する。
さらに,ppdlはラベルや共変量シフトのシナリオにおいて,標準ベンチマークのモデル性能において従来の非プライベートメソッドを上回っていることを示す。
関連論文リスト
- Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
本稿では,フェデレート・ラーニング (FL) とクロスビュー・イメージ・ジオローカライゼーション (CVGL) 技術を組み合わせた方法論を提案する。
提案手法では, クライアントが粗い特徴抽出器のみを共有しながら, 局所環境に特有のきめ細かな特徴を保持する, 粗い特徴抽出器を実装している。
その結果,フェデレートCVGL法は,データプライバシを維持しつつ,集中的なトレーニングに近い性能を実現することができた。
論文 参考訳(メタデータ) (2024-11-07T13:25:52Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Decentralized Personalized Federated Learning [4.5836393132815045]
私たちは、パーソナライズされたモデルのトレーニングに適したコラボレータを選択する際に、各クライアントをガイドするコラボレーショングラフの作成に重点を置いています。
従来の手法とは違って,クライアントの欲求関係を考慮し,より粒度の細かい共同作業者を特定する。
これを実現するために,制約付きアルゴリズムを用いた二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T17:58:48Z) - Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
信頼できない無線ネットワークの異なるノードに分散するベクトルの平均をプライベートに推定する問題を考える。
半分散的なセットアップでは、ノードは隣人と協力してローカルコンセンサスを計算し、中央サーバにリレーする。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2024-06-06T06:12:15Z) - Approximate Gradient Coding for Privacy-Flexible Federated Learning with Non-IID Data [9.984630251008868]
この研究は、フェデレートラーニングにおける非IIDデータとストラグラー/ドロップアウトの課題に焦点を当てる。
クライアントのローカルデータの一部を非プライベートとしてモデル化する、プライバシフレキシブルなパラダイムを導入し、検討する。
論文 参考訳(メタデータ) (2024-04-04T15:29:50Z) - Differentially Private Decentralized Learning with Random Walks [15.862152253607496]
ランダムウォークアルゴリズムを用いて分散学習のプライバシー保証を特徴付ける。そこでは、あるノードから別のノードへ通信グラフのエッジに沿って移動することで、モデルを更新する。
その結果、ランダムウォークアルゴリズムは、互いに近接するノードに対するゴシップアルゴリズムよりも、より優れたプライバシ保証をもたらす傾向があることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-12T08:16:58Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Generalizing Differentially Private Decentralized Deep Learning with Multi-Agent Consensus [11.414398732656839]
本稿では,分散ディープラーニングに差分プライバシーを組み込んだフレームワークを提案する。
本稿では,このフレームワークから派生したアルゴリズムの収束保証を証明し,その実用性を示す。
論文 参考訳(メタデータ) (2023-06-24T07:46:00Z) - Personalized Graph Federated Learning with Differential Privacy [6.282767337715445]
本稿では、分散接続されたサーバとそのエッジデバイスが協調してデバイスやクラスタ固有のモデルを学習する、パーソナライズされたグラフフェデレーション学習(PGFL)フレームワークを提案する。
本稿では、差分プライバシー、特にノイズシーケンスがモデル交換を行うゼロ集中差分プライバシーを利用するPGFL実装の変種について検討する。
分析の結果,このアルゴリズムは,ゼロ集中型差分プライバシーの観点から,全クライアントの局所的な差分プライバシを保証することがわかった。
論文 参考訳(メタデータ) (2023-06-10T09:52:01Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。