論文の概要: Cause-Effect Inference in Location-Scale Noise Models: Maximum
Likelihood vs. Independence Testing
- arxiv url: http://arxiv.org/abs/2301.12930v3
- Date: Thu, 26 Oct 2023 00:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-28 05:43:49.702114
- Title: Cause-Effect Inference in Location-Scale Noise Models: Maximum
Likelihood vs. Independence Testing
- Title(参考訳): 位置スケール騒音モデルにおける因果効果推定--最大確率と独立性テスト
- Authors: Xiangyu Sun, Oliver Schulte
- Abstract要約: 因果発見の根本的な問題は因果推論であり、2つの確率変数間の正しい因果方向を学習する。
最近導入されたヘテロセダスティックな位置スケールノイズ汎関数モデル(LSNM)は、表現力と識別可能性の保証を組み合わせたものである。
雑音分布が正しく特定された場合,LSNMモデル選択が最先端の精度を実現することを示す。
- 参考スコア(独自算出の注目度): 19.23479356810746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental problem of causal discovery is cause-effect inference, learning
the correct causal direction between two random variables. Significant progress
has been made through modelling the effect as a function of its cause and a
noise term, which allows us to leverage assumptions about the generating
function class. The recently introduced heteroscedastic location-scale noise
functional models (LSNMs) combine expressive power with identifiability
guarantees. LSNM model selection based on maximizing likelihood achieves
state-of-the-art accuracy, when the noise distributions are correctly
specified. However, through an extensive empirical evaluation, we demonstrate
that the accuracy deteriorates sharply when the form of the noise distribution
is misspecified by the user. Our analysis shows that the failure occurs mainly
when the conditional variance in the anti-causal direction is smaller than that
in the causal direction. As an alternative, we find that causal model selection
through residual independence testing is much more robust to noise
misspecification and misleading conditional variance.
- Abstract(参考訳): 因果発見の根本的な問題は因果推論であり、2つの確率変数間の正しい因果方向を学習する。
原因関数と雑音項の関数としての効果をモデル化することで、生成関数のクラスに関する仮定を活用できる重要な進歩がなされた。
最近導入されたヘテロセダスティックな位置スケールノイズ汎関数モデル(LSNM)は、表現力と識別可能性を保証する。
最大化可能性に基づくLSNMモデル選択は、ノイズ分布が正しく特定されたときに最先端の精度を達成する。
しかし, 広範囲な実験的評価により, 雑音分布形態がユーザによって不特定化されると, 精度が著しく低下することを示す。
本分析は, 原因方向よりも反因果方向の条件分散が小さい場合に主に発生することを示す。
代替として、残差独立試験による因果モデル選択は、ノイズの特定や条件分散の誤解を招きやすいことを発見した。
関連論文リスト
- Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
学生の$t$-distributionは、より小さなサンプルサイズと極端な値で、全体の分布形態を著しく変えることなく、サンプル変数をサンプリングすることの堅牢さで知られている。
我々の経験的評価は、我々の推定器はより堅牢で、合成ベンチマークと実ベンチマークの総合的な性能が向上していることを示している。
論文 参考訳(メタデータ) (2023-12-15T02:26:35Z) - Distinguishing Cause from Effect on Categorical Data: The Uniform
Channel Model [0.0]
一対の確率変数の観測による効果による原因の識別は因果発見における中核的な問題である。
分類変数を用いた原因影響問題に対処するための基準を提案する。
我々は、条件付き確率質量関数が一様チャネル(UC)に最も近い因果方向として選択する。
論文 参考訳(メタデータ) (2023-03-14T13:54:11Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
位置スケール・異方性雑音モデル(LSNM)のクラスについて検討する。
症例によっては, 因果方向が同定可能であることが示唆された。
我々は,LSNMの2つの推定器を提案し,その1つは(非線形)特徴写像に基づく推定器と,1つはニューラルネットワークに基づく推定器を提案する。
論文 参考訳(メタデータ) (2022-10-13T17:18:59Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
この仮定から逸脱すると、実際により良い統計的推定結果が得られることが示される。
特に、最適な雑音分布は、データと異なり、また、別の家族からさえも異なる。
論文 参考訳(メタデータ) (2022-03-02T13:59:20Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
観測データセットからの因果推論は、しばしば共変量の測定と調整に依存する。
このロバストな最適化手法により、広範囲な因果調整法を拡張し、部分的同定を行うことができることを示す。
合成および実データセット全体で、このアプローチは既存の手法よりも高いカバレッジ確率でATEバウンダリを提供する。
論文 参考訳(メタデータ) (2022-02-22T04:24:26Z) - Analyzing and Improving the Optimization Landscape of Noise-Contrastive
Estimation [50.85788484752612]
ノイズコントラスト推定(NCE)は、非正規化確率モデルを学習するための統計的に一貫した手法である。
ノイズ分布の選択がNCEの性能に不可欠であることが実験的に観察されている。
本研究では,不適切な雑音分布を用いた場合,NCEの性能低下の原因を正式に指摘する。
論文 参考訳(メタデータ) (2021-10-21T16:57:45Z) - Causal Identification with Additive Noise Models: Quantifying the Effect
of Noise [5.037636944933989]
本研究では,異なる雑音レベルが付加雑音モデルに及ぼす影響について検討し,因果関係の方向を同定する。
加法雑音のレベルが原因雑音の1%から10000%に徐々に変化するような網羅的な範囲のモデルを用いる。
実験の結果,ANMs法はある種のノイズに対して真の因果方向を捉えることができないことがわかった。
論文 参考訳(メタデータ) (2021-10-15T13:28:33Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - The Effect of Noise Level on Causal Identification with Additive Noise
Models [0.0]
本研究では,雑音レベルの違いが付加雑音モデルに及ぼす影響を考察し,因果関係の方向を同定する。
textitRegression with Subsequent Independence Test とtextitIdentification using Conditional Variances の2つの方法が選択された。
実験の結果、これらの手法はある種のノイズに対して真の因果方向を捉えることができないことが示された。
論文 参考訳(メタデータ) (2021-08-24T11:18:41Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
勾配降下のノイズはパラメータ化モデルに対するトレーニングにおいて重要な暗黙の正則化効果をもたらす。
ミニバッチやラベルの摂動によって引き起こされるパラメータ依存ノイズはガウスノイズよりもはるかに効果的であることを示す。
分析の結果,パラメータ依存ノイズは局所最小値に偏りを生じさせるが,球状ガウス雑音は生じないことがわかった。
論文 参考訳(メタデータ) (2020-06-15T18:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。