論文の概要: Looped Transformers as Programmable Computers
- arxiv url: http://arxiv.org/abs/2301.13196v1
- Date: Mon, 30 Jan 2023 18:57:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 13:11:46.180845
- Title: Looped Transformers as Programmable Computers
- Title(参考訳): プログラマブルコンピュータとしてのループトランスフォーマー
- Authors: Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason
D. Lee, Dimitris Papailiopoulos
- Abstract要約: 本稿では,トランスフォーマーネットワークを,特定の重みでプログラミングし,ループに配置することで,ユニバーサルコンピュータとして利用するフレームワークを提案する。
我々の入力シーケンスは、データ読み書きのための命令とメモリからなるパンチカードとして機能する。
この変換器は、入力によって指示され、基本計算器、基本線形代数ライブラリ、およびバックプロパゲーションを用いたコンテキスト内学習アルゴリズムをエミュレートできることを示す。
- 参考スコア(独自算出の注目度): 48.00010456819222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework for using transformer networks as universal computers
by programming them with specific weights and placing them in a loop. Our input
sequence acts as a punchcard, consisting of instructions and memory for data
read/writes. We demonstrate that a constant number of encoder layers can
emulate basic computing blocks, including embedding edit operations, non-linear
functions, function calls, program counters, and conditional branches. Using
these building blocks, we emulate a small instruction-set computer. This allows
us to map iterative algorithms to programs that can be executed by a looped,
13-layer transformer. We show how this transformer, instructed by its input,
can emulate a basic calculator, a basic linear algebra library, and in-context
learning algorithms that employ backpropagation. Our work highlights the
versatility of the attention mechanism, and demonstrates that even shallow
transformers can execute full-fledged, general-purpose programs.
- Abstract(参考訳): 本稿では,トランスフォーマーネットワークを,特定の重みでプログラミングし,ループに配置することで,ユニバーサルコンピュータとして利用するフレームワークを提案する。
我々の入力シーケンスは、データ読み書きのための命令とメモリからなるパンチカードとして機能する。
一定の数のエンコーダ層が、編集操作、非線形関数、関数呼び出し、プログラムカウンタ、条件分岐などの基本的な計算ブロックをエミュレートできることを実証する。
これらのビルディングブロックを用いて、小さな命令セットコンピュータをエミュレートする。
これにより、ループ化された13層トランスで実行できるプログラムに反復アルゴリズムをマッピングできる。
この変換器は、入力によって指示され、基本計算器、基本線形代数ライブラリ、およびバックプロパゲーションを用いたコンテキスト内学習アルゴリズムをエミュレートできることを示す。
本研究はアテンション機構の汎用性を強調し,浅いトランスフォーマーでも汎用的なプログラムを実行できることを示す。
関連論文リスト
- Graph Transformers Dream of Electric Flow [72.06286909236827]
グラフデータに適用された線形変換器は、正準問題を解くアルゴリズムを実装可能であることを示す。
そこで我々は,これらのグラフアルゴリズムをそれぞれ実装するための明示的な重み設定を提案し,基礎となるアルゴリズムの誤差によって構築したトランスフォーマーの誤差を限定する。
論文 参考訳(メタデータ) (2024-10-22T05:11:45Z) - Transformers are Efficient Compilers, Provably [11.459397066286822]
トランスフォーマーベースの大規模言語モデル(LLM)は、幅広い言語関連タスクにおいて驚くほど堅牢なパフォーマンスを示している。
本稿では,表現力の観点から,トランスフォーマーをコンパイラとして用いることの正式な調査に向けて第一歩を踏み出す。
代表言語であるMini-Huskyを導入し、現代のC言語の特徴をカプセル化する。
論文 参考訳(メタデータ) (2024-10-07T20:31:13Z) - Algorithmic Capabilities of Random Transformers [49.73113518329544]
埋め込み層のみを最適化したランダムトランスフォーマーによって、どのような関数が学習できるかを検討する。
これらのランダムなトランスフォーマーは、幅広い意味のあるアルゴリズムタスクを実行することができる。
以上の結果から,これらのモデルが訓練される前にも,アルゴリズム能力がトランスフォーマに存在することが示唆された。
論文 参考訳(メタデータ) (2024-10-06T06:04:23Z) - Learning Transformer Programs [78.9509560355733]
設計によって機械的に解釈可能なトランスフォーマーの訓練手順を導入する。
人書きプログラムをTransformerにコンパイルする代わりに、勾配に基づく最適化を用いてトレーニングできる改良されたTransformerを設計する。
Transformer Programsは適切なソリューションを自動的に見つけ、同等のサイズの標準のTransformerと同等に動作する。
論文 参考訳(メタデータ) (2023-06-01T20:27:01Z) - Planning with Large Language Models for Code Generation [100.07232672883897]
Planning-Guided Transformer Decoding (PG-TD) は、計画アルゴリズムを用いてルックアヘッド検索を行い、トランスフォーマーを誘導してより良いプログラムを生成する。
我々は、公開コーディングチャレンジベンチマークのバックボーンとして、いくつかの大きな言語モデルを用いて、我々のフレームワークを実証的に評価する。
論文 参考訳(メタデータ) (2023-03-09T18:59:47Z) - Tracr: Compiled Transformers as a Laboratory for Interpretability [15.76027393879609]
人間の読みやすいプログラムをデコーダのみのトランスフォーマーモデルに"コンパイル"する方法を示す。
コンパイラであるTrcrは、既知の構造を持つモデルを生成する。
マルチステップアルゴリズムを実行する変換器の「重ね合わせ」について検討する。
論文 参考訳(メタデータ) (2023-01-12T14:59:19Z) - Thinking Like Transformers [64.96770952820691]
本稿では,プログラミング言語の形式で変換器エンコーダの計算モデルを提案する。
RASPは、トランスフォーマーによって確実に学習できるタスクの解決策をプログラムするのにどのように使えるかを示す。
ヒストグラム、ソート、ダイク言語のためのRASPプログラムを提供する。
論文 参考訳(メタデータ) (2021-06-13T13:04:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。