論文の概要: Incorporating Recurrent Reinforcement Learning into Model Predictive
Control for Adaptive Control in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2301.13313v1
- Date: Mon, 30 Jan 2023 22:11:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 18:30:19.930129
- Title: Incorporating Recurrent Reinforcement Learning into Model Predictive
Control for Adaptive Control in Autonomous Driving
- Title(参考訳): 自律運転における適応制御のためのモデル予測制御への繰り返し強化学習の導入
- Authors: Yuan Zhang, Joschka Boedecker, Chuxuan Li, Guyue Zhou
- Abstract要約: モデル予測制御(MPC)は、強力な制御技術として自律運転タスクに大きな注目を集めている。
本稿では,この問題を部分的に観測されたマルコフ決定過程(POMDP)として再検討する。
次に、最適かつ適応的な制御のために、リカレント強化学習(RRL)を通して、動的モデルのパラメータを継続的に適応させるリカレントポリシーを学習する。
- 参考スコア(独自算出の注目度): 11.67417895998434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model Predictive Control (MPC) is attracting tremendous attention in the
autonomous driving task as a powerful control technique. The success of an MPC
controller strongly depends on an accurate internal dynamics model. However,
the static parameters, usually learned by system identification, often fail to
adapt to both internal and external perturbations in real-world scenarios. In
this paper, we firstly (1) reformulate the problem as a Partially Observed
Markov Decision Process (POMDP) that absorbs the uncertainties into
observations and maintains Markov property into hidden states; and (2) learn a
recurrent policy continually adapting the parameters of the dynamics model via
Recurrent Reinforcement Learning (RRL) for optimal and adaptive control; and
(3) finally evaluate the proposed algorithm (referred as $\textit{MPC-RRL}$) in
CARLA simulator and leading to robust behaviours under a wide range of
perturbations.
- Abstract(参考訳): モデル予測制御(MPC)は、強力な制御技術として自律運転タスクに大きな注目を集めている。
MPCコントローラの成功は、正確な内部力学モデルに依存している。
しかし、通常はシステム識別によって学習される静的パラメータは、現実世界のシナリオにおいて内部および外部の摂動の両方に適応できないことが多い。
In this paper, we firstly (1) reformulate the problem as a Partially Observed Markov Decision Process (POMDP) that absorbs the uncertainties into observations and maintains Markov property into hidden states; and (2) learn a recurrent policy continually adapting the parameters of the dynamics model via Recurrent Reinforcement Learning (RRL) for optimal and adaptive control; and (3) finally evaluate the proposed algorithm (referred as $\textit{MPC-RRL}$) in CARLA simulator and leading to robust behaviours under a wide range of perturbations.
関連論文リスト
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
本稿では,最大エントロピー深層強化学習フレームワークを古典的なモデルベース制御アーキテクチャと組み合わせ,適応制御系を定式化する新しい手法を提案する。
本フレームワークでは,バイオインスパイアされた体験再生機構,拡張されたドメインランダム化手法,物理プラットフォーム上で実行される評価プロトコルなどを含むSim-to-Real転送戦略を導入する。
実験により,AUVの準最適モデルから有能なポリシを効果的に学習し,実車への移動時の制御性能を3倍に向上することを示した。
論文 参考訳(メタデータ) (2023-10-17T08:46:56Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - Adaptive Model Predictive Control by Learning Classifiers [26.052368583196426]
制御パラメータとモデルパラメータを自動的に推定する適応型MPC変種を提案する。
我々は,BOを密度比推定として定式化できることを示す最近の結果を活用する。
その後、これはモデル予測経路積分制御フレームワークに統合され、様々な困難なロボティクスタスクのための堅牢なコントローラを生成する。
論文 参考訳(メタデータ) (2022-03-13T23:22:12Z) - Robust Value Iteration for Continuous Control Tasks [99.00362538261972]
シミュレーションから物理システムへ制御ポリシを転送する場合、そのポリシは、動作の変動に対して堅牢でなければならない。
本稿では、動的プログラミングを用いて、コンパクトな状態領域上での最適値関数を計算するRobust Fitted Value Iterationを提案する。
より深い強化学習アルゴリズムや非ロバストなアルゴリズムと比較して、ロバストな値の方が頑健であることを示す。
論文 参考訳(メタデータ) (2021-05-25T19:48:35Z) - Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust [0.2770822269241973]
未知の条件下でのナビゲーション問題は、制御分野において最も重要でよく研究されている問題の一つである。
近年のモデルフリー適応制御法は, センサフィードバックから直接植物の物理的特性を学習することにより, この依存を除去することを目的としている。
提案手法は,深い強化学習フレームワークによって頑健に調整された完全状態フィードバックコントローラからなる,概念的にシンプルな学習ベースアプローチを提案する。
論文 参考訳(メタデータ) (2021-01-29T10:13:56Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。