論文の概要: Numeracy from Literacy: Data Science as an Emergent Skill from Large
Language Models
- arxiv url: http://arxiv.org/abs/2301.13382v1
- Date: Tue, 31 Jan 2023 03:14:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 17:53:32.101119
- Title: Numeracy from Literacy: Data Science as an Emergent Skill from Large
Language Models
- Title(参考訳): リテラシーからの栄養:大規模言語モデルからの創発的スキルとしてのデータサイエンス
- Authors: David Noever, Forrest McKee
- Abstract要約: OpenAIのChatGPTやGPT-3のような大規模言語モデル(LLM)は、リテラシーを数字化するための翻訳課題を探求するためのユニークなテストベッドを提供する。
以前の18ヶ月前から公開されていたトランスフォーマーモデルと1000倍の小さなモデルでは基本的な算術演算が得られなかった。
本研究は, 文の完成から実際の数値理解の領域へ, 次世代の予測が成功するかどうかを考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLM) such as OpenAI's ChatGPT and GPT-3 offer unique
testbeds for exploring the translation challenges of turning literacy into
numeracy. Previous publicly-available transformer models from eighteen months
prior and 1000 times smaller failed to provide basic arithmetic. The
statistical analysis of four complex datasets described here combines
arithmetic manipulations that cannot be memorized or encoded by simple rules.
The work examines whether next-token prediction succeeds from sentence
completion into the realm of actual numerical understanding. For example, the
work highlights cases for descriptive statistics on in-memory datasets that the
LLM initially loads from memory or generates randomly using python libraries.
The resulting exploratory data analysis showcases the model's capabilities to
group by or pivot categorical sums, infer feature importance, derive
correlations, and predict unseen test cases using linear regression. To extend
the model's testable range, the research deletes and appends random rows such
that recall alone cannot explain emergent numeracy.
- Abstract(参考訳): OpenAIのChatGPTやGPT-3のような大規模言語モデル(LLM)は、リテラシーを数字化するための翻訳課題を探求するためのユニークなテストベッドを提供する。
以前の18ヶ月前から1000倍小型の変圧器は基本的な算術を提供できなかった。
ここで説明する4つの複雑なデータセットの統計解析は、単純な規則で記憶または符号化できない算術演算を組み合わせる。
本研究は、文の完成から実際の数値理解の領域への次の予測が成功するかどうかを考察する。
例えば、LLMが最初にメモリからロードするか、pythonライブラリを使ってランダムに生成するインメモリデータセットに関する記述統計のケースを強調している。
その結果得られた探索的データ分析は、モデルがカテゴリの合計をグループ化し、特徴の重要度を推測し、相関を導出し、線形回帰を用いて見当たらないテストケースを予測する能力を示す。
モデルのテスト可能な範囲を拡張するために、リコールだけで創発的数理を説明できないようなランダムな行を削除および追加する。
関連論文リスト
- Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
本研究は, より単純で知識集約的なタスクにおいて, 記憶がより大きな役割を担い, 一般化が, より困難で推論に基づくタスクの鍵であることを示す。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - DataAgent: Evaluating Large Language Models' Ability to Answer Zero-Shot, Natural Language Queries [0.0]
OpenAIのGPT-3.5をLanguage Data Scientist(LDS)として評価する
このモデルは、さまざまなベンチマークデータセットでテストされ、そのパフォーマンスを複数の標準で評価した。
論文 参考訳(メタデータ) (2024-03-29T22:59:34Z) - Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data [21.912611415307644]
大規模言語モデル (LLM) は様々なタスクに適用できるが、データ汚染と記憶の重大な問題はしばしば誇張される。
本稿では, 条件分布モデリングの統計的テストや, 暗記を識別する4つのテストなど, 汚染度を評価するための様々な手法を紹介する。
論文 参考訳(メタデータ) (2024-03-11T12:07:13Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
我々は、文脈言語学習(ICLL)において、私たちが用語する新しいモデル問題群(英語版)のレンズを通してICLを研究する。
我々は,通常のICLLタスクにおいて,多種多様なニューラルシーケンスモデルを評価する。
論文 参考訳(メタデータ) (2024-01-23T18:59:21Z) - How Predictable Are Large Language Model Capabilities? A Case Study on
BIG-bench [52.11481619456093]
実験記録におけるBIGベンチの性能予測問題について検討する。
95%以上のR2$スコアは、実験記録の中に学習可能なパターンが存在することを示している。
BIG-bench Hardのように新しいモデルファミリーを評価できるサブセットが3倍程度小さくなっています。
論文 参考訳(メタデータ) (2023-05-24T09:35:34Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
この論文は、データ制約された設定で表現力のあるモデルを学ぶという問題に対する異なる答えを探求する。
ニューラルネットワークを学ぶために、大きなデータセットに頼るのではなく、データ構造を反映した既知の関数によって、いくつかのモジュールを置き換えるつもりです。
我々のアプローチは「帰納的バイアス」のフードの下に置かれており、これは探索するモデルの空間を制限する手元にあるデータの仮説として定義することができる。
論文 参考訳(メタデータ) (2023-02-21T14:22:01Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
大規模ニューラルネットワークにおけるモデルとトレーニングデータセットサイズ間の計算-最適トレードオフについて検討する。
以上の結果から, チンチラの実証分析で裏付けられる線形関係が示唆された。
論文 参考訳(メタデータ) (2022-12-02T18:46:41Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
本稿では,ニューラルパラメータの空間に対するベイズ生成モデルを提案する。
タスク言語の組み合わせから得られたデータに基づいて、そのような潜伏変数よりも後部を推測する。
我々のモデルは、最先端のゼロショットの言語間転送手法よりも、同等か良い結果が得られる。
論文 参考訳(メタデータ) (2020-01-30T16:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。