論文の概要: Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data
- arxiv url: http://arxiv.org/abs/2403.06644v1
- Date: Mon, 11 Mar 2024 12:07:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:10:52.389850
- Title: Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data
- Title(参考訳): elephants never forget: 表データの記憶のための言語モデルのテスト
- Authors: Sebastian Bordt, Harsha Nori, Rich Caruana
- Abstract要約: 大規模言語モデル (LLM) は様々なタスクに適用できるが、データ汚染と記憶の重大な問題はしばしば誇張される。
本稿では, 条件分布モデリングの統計的テストや, 暗記を識別する4つのテストなど, 汚染度を評価するための様々な手法を紹介する。
- 参考スコア(独自算出の注目度): 21.912611415307644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While many have shown how Large Language Models (LLMs) can be applied to a
diverse set of tasks, the critical issues of data contamination and
memorization are often glossed over. In this work, we address this concern for
tabular data. Starting with simple qualitative tests for whether an LLM knows
the names and values of features, we introduce a variety of different
techniques to assess the degrees of contamination, including statistical tests
for conditional distribution modeling and four tests that identify
memorization. Our investigation reveals that LLMs are pre-trained on many
popular tabular datasets. This exposure can lead to invalid performance
evaluation on downstream tasks because the LLMs have, in effect, been fit to
the test set. Interestingly, we also identify a regime where the language model
reproduces important statistics of the data, but fails to reproduce the dataset
verbatim. On these datasets, although seen during training, good performance on
downstream tasks might not be due to overfitting. Our findings underscore the
need for ensuring data integrity in machine learning tasks with LLMs. To
facilitate future research, we release an open-source tool that can perform
various tests for memorization
\url{https://github.com/interpretml/LLM-Tabular-Memorization-Checker}.
- Abstract(参考訳): 大規模言語モデル(LLM)が様々なタスクにどのように適用できるかを示すものが多いが、データ汚染と記憶の重大な問題はしばしば注目されている。
本稿では,表データに対する懸念について述べる。
llmが特徴の名前と値を知っているかどうかの単純な定性テストから始め、条件分布モデリングの統計的テストや記憶を識別する4つのテストなど、汚染度を評価する様々な手法を導入する。
調査の結果,LLMは多数の一般的な表付きデータセット上で事前学習されていることがわかった。
この露出は、LLMが事実上テストセットに適合するため、下流タスクにおける不正なパフォーマンス評価につながる可能性がある。
興味深いことに、言語モデルがデータの重要な統計を再現するが、データセットの冗長性を再現できない状態も特定する。
これらのデータセットでは、トレーニング中に見られるが、ダウンストリームタスクのパフォーマンスはオーバーフィットによるものではない。
LLMを用いた機械学習タスクにおいて,データの整合性を確保する必要性が示唆された。
今後の研究を容易にするため,メモリ化の様々なテストを行うオープンソースツールを,LLM-Tabular-Memorization-Checker} として公開した。
関連論文リスト
- On Unsupervised Prompt Learning for Classification with Black-box Language Models [71.60563181678323]
大規模言語モデル(LLM)は、テキスト形式学習問題において顕著な成功を収めた。
LLMは、熟練した人間のアノテータよりも品質の高いデータセットをラベル付けすることができる。
本稿では,ブラックボックス LLM を用いた分類のための教師なしのプロンプト学習を提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
本稿では,複数選択肢の内容に基づいた簡易かつ効果的なデータ漏洩検出手法を提案する。
本手法は,モデルトレーニングデータや重みを使用せずに,ブラックボックス条件下で動作することができる。
我々は,4つのベンチマークデータセットを用いて,31個の主要なオープンソースLCMのデータ漏洩の程度を評価する。
論文 参考訳(メタデータ) (2024-09-03T11:09:44Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Large Language Models Memorize Sensor Datasets! Implications on Human Activity Recognition Research [0.23982628363233693]
本研究では,Large Language Models (LLMs) が,訓練中にHAR(Human Activity Recognition)データセットにアクセス可能かどうかを検討する。
ほとんどの現代のLLMは、事実上(アクセス可能な)インターネット上でトレーニングされています。
特にダフネットデータセットでは、GPT-4はセンサー読み取りのブロックを再現することができる。
論文 参考訳(メタデータ) (2024-06-09T19:38:27Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models [21.10890310571397]
大規模言語モデル (LLM) は様々なタスクに適用できるが、データ汚染と記憶の重大な問題はしばしば誇張される。
この研究は、トレーニング中に言語モデルがデータセットを見たかどうかを評価するためのさまざまなテクニックを導入している。
次に、トレーニング中に見られたデータセット上でのLLMの数発の学習性能と、トレーニング後にリリースされたデータセットのパフォーマンスを比較した。
論文 参考訳(メタデータ) (2024-04-09T10:58:21Z) - Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science [17.910306140400046]
この研究は、これらの予測タスクにLarge Language Models (LLM)を適用する試みである。
本研究の目的は,Llama-2 の大規模学習を行う上で,注釈付きテーブルの包括的コーパスをコンパイルすることで,このギャップを緩和することにある。
論文 参考訳(メタデータ) (2024-03-29T14:41:21Z) - On Inter-dataset Code Duplication and Data Leakage in Large Language Models [4.148857672591562]
本稿では,データセット間の重複現象とその大規模言語モデル(LLM)評価への影響について検討する。
この結果から,複数のSEタスクにまたがるLCMの評価は,データ間重複現象に起因する可能性が示唆された。
オープンソースモデルがデータセット間の重複に影響される可能性があることを示す。
論文 参考訳(メタデータ) (2024-01-15T19:46:40Z) - Test-Time Self-Adaptive Small Language Models for Question Answering [63.91013329169796]
ラベルのないテストデータのみを用いて、より小さな自己適応型LMの能力を示し、検討する。
提案した自己適応戦略は,ベンチマークQAデータセットの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-10-20T06:49:32Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。