論文の概要: Classified as unknown: A novel Bayesian neural network
- arxiv url: http://arxiv.org/abs/2301.13401v1
- Date: Tue, 31 Jan 2023 04:27:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 17:32:09.353333
- Title: Classified as unknown: A novel Bayesian neural network
- Title(参考訳): 未知に分類:新しいベイズ型ニューラルネットワーク
- Authors: Tianbo Yang and Tianshuo Yang
- Abstract要約: 完全連結ニューラルネットワークのための効率の良いベイズ学習アルゴリズムを開発した。
多層パーセプトロンから多層パーセプトロンへの二元分類のための単一パーセプトロンのアルゴリズムを一般化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish estimations for the parameters of the output distribution for
the softmax activation function using the probit function. As an application,
we develop a new efficient Bayesian learning algorithm for fully connected
neural networks, where training and predictions are performed within the
Bayesian inference framework in closed-form. This approach allows sequential
learning and requires no computationally expensive gradient calculation and
Monte Carlo sampling. Our work generalizes the Bayesian algorithm for a single
perceptron for binary classification in \cite{H} to multi-layer perceptrons for
multi-class classification.
- Abstract(参考訳): 本稿では,probit関数を用いたsoftmaxアクティベーション関数の出力分布パラメータの推定を行う。
応用として、完全連結ニューラルネットワークのための新しい効率的なベイズ学習アルゴリズムを開発し、ベイズ推論フレームワーク内でクローズドフォームでトレーニングと予測を行う。
このアプローチは逐次学習を可能にし、計算コストの高い勾配計算やモンテカルロサンプリングを必要としない。
本研究は,二進分類のための単一パーセプトロンに対するベイズアルゴリズムを,多クラス分類のための多層パーセプトロンに一般化する。
関連論文リスト
- Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
本稿では,ネストサンプリングアルゴリズムに特化してベイズ推論を高速化する新しい手法を提案する。
提案手法は,ベイズ推論過程における確率関数を動的に近似するために,フィードフォワードニューラルネットワークを用いてディープラーニングのパワーを利用する。
この実装はネストサンプリングアルゴリズムと統合され、単純な宇宙学のダークエネルギーモデルと多様な観測データセットの両方を用いて徹底的に評価されている。
論文 参考訳(メタデータ) (2024-05-06T09:14:58Z) - Pruning a neural network using Bayesian inference [1.776746672434207]
ニューラルネットワークのプルーニングは、大規模ニューラルネットワークの計算とメモリ要求を減らすための非常に効果的な手法である。
本稿では,ベイズ推論を応用したニューラルネットの刈り取り手法を提案する。
論文 参考訳(メタデータ) (2023-08-04T16:34:06Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Bayesian Federated Neural Matching that Completes Full Information [2.6566593102111473]
フェデレートラーニング(Federated Learning)は、局所的に訓練されたモデルをグローバルモデルに蒸留する機械学習パラダイムである。
そこで本研究では,各イテレーションでKulback-Leibler分散ペナルティを導入することで,この欠陥を克服する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-15T09:47:56Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
我々はPFN(Presideed Data Fitted Networks)を提案する。
PFNは、大規模機械学習技術におけるインコンテキスト学習を活用して、大規模な後部集合を近似する。
我々は、PFNがガウス過程をほぼ完璧に模倣し、難解問題に対する効率的なベイズ推定を可能にすることを示した。
論文 参考訳(メタデータ) (2021-12-20T13:07:39Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
本稿では,ガウス過程の回帰と組み合わせて実数値列を生成する,計算効率のよいアテンションベースネットワークを提案する。
我々は,GPがフルバッチを用いて訓練されている間,ネットワークのミニバッチトレーニングを可能にするブロックワイズトレーニングアルゴリズムを開発した。
アルゴリズムは収束することが証明され、より良くなくても、見いだされた解の品質に匹敵することを示す。
論文 参考訳(メタデータ) (2021-02-10T01:19:15Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。