Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality
- URL: http://arxiv.org/abs/2406.11048v1
- Date: Sun, 16 Jun 2024 19:18:06 GMT
- Title: Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality
- Authors: Liwei Che, Jiaqi Wang, Xinyue Liu, Fenglong Ma,
- Abstract summary: We propose a novel multi-modal federated learning method, Federated Multi-modal contrastiVe training with Pre-trained completion (FedMVP)
FedMVP integrates the large-scale pre-trained models to enhance the federated training.
We demonstrate that the model achieves superior performance over two real-world image-text classification datasets.
- Score: 41.79433449873368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has obtained tremendous progress in providing collaborative training solutions for distributed data silos with privacy guarantees. However, few existing works explore a more realistic scenario where the clients hold multiple data modalities. In this paper, we aim to solve a novel challenge in multi-modal federated learning (MFL) -- modality missing -- the clients may lose part of the modalities in their local data sets. To tackle the problems, we propose a novel multi-modal federated learning method, Federated Multi-modal contrastiVe training with Pre-trained completion (FedMVP), which integrates the large-scale pre-trained models to enhance the federated training. In the proposed FedMVP framework, each client deploys a large-scale pre-trained model with frozen parameters for modality completion and representation knowledge transfer, enabling efficient and robust local training. On the server side, we utilize generated data to uniformly measure the representation similarity among the uploaded client models and construct a graph perspective to aggregate them according to their importance in the system. We demonstrate that the model achieves superior performance over two real-world image-text classification datasets and is robust to the performance degradation caused by missing modality.
Related papers
- Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Multimodal Federated Learning with Missing Modality via Prototype Mask
and Contrast [23.936677199734213]
In this paper, we introduce a prototype library into the FedAvg-based Federated Learning framework.
The proposed method utilizes prototypes as masks representing missing modalities to formulate a task-calibrated training loss and a model-agnostic uni-modality inference strategy.
Compared to the baselines, our method improved inference accuracy by 3.7% with 50% modality missing during training and by 23.8% during uni-modality inference.
arXiv Detail & Related papers (2023-12-21T00:55:12Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal
Heterogeneous Federated Learning [37.96957782129352]
We propose a finetuning framework tailored to heterogeneous multi-modal foundation models, called Federated Dual-Aadapter Teacher (Fed DAT)
Fed DAT addresses data heterogeneity by regularizing the client local updates and applying Mutual Knowledge Distillation (MKD) for an efficient knowledge transfer.
To demonstrate its effectiveness, we conduct extensive experiments on four multi-modality FL benchmarks with different types of data heterogeneity.
arXiv Detail & Related papers (2023-08-21T21:57:01Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformer is a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client.
We develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling.
Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models.
arXiv Detail & Related papers (2023-03-27T07:07:33Z) - Multimodal Federated Learning via Contrastive Representation Ensemble [17.08211358391482]
Federated learning (FL) serves as a privacy-conscious alternative to centralized machine learning.
Existing FL methods all rely on model aggregation on single modality level.
We propose Contrastive Representation Ensemble and Aggregation for Multimodal FL (CreamFL)
arXiv Detail & Related papers (2023-02-17T14:17:44Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning (FL) is a framework for on-device collaborative training of machine learning models.
First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client.
We study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions.
arXiv Detail & Related papers (2021-08-23T15:47:53Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.