Diffusing Gaussian Mixtures for Generating Categorical Data
- URL: http://arxiv.org/abs/2303.04635v1
- Date: Wed, 8 Mar 2023 14:55:32 GMT
- Title: Diffusing Gaussian Mixtures for Generating Categorical Data
- Authors: Florence Regol and Mark Coates
- Abstract summary: We propose a generative model for categorical data based on diffusion models with a focus on high-quality sample generation.
Our method of evaluation highlights the capabilities and limitations of different generative models for generating categorical data.
- Score: 21.43283907118157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning a categorical distribution comes with its own set of challenges. A
successful approach taken by state-of-the-art works is to cast the problem in a
continuous domain to take advantage of the impressive performance of the
generative models for continuous data. Amongst them are the recently emerging
diffusion probabilistic models, which have the observed advantage of generating
high-quality samples. Recent advances for categorical generative models have
focused on log likelihood improvements. In this work, we propose a generative
model for categorical data based on diffusion models with a focus on
high-quality sample generation, and propose sampled-based evaluation methods.
The efficacy of our method stems from performing diffusion in the continuous
domain while having its parameterization informed by the structure of the
categorical nature of the target distribution. Our method of evaluation
highlights the capabilities and limitations of different generative models for
generating categorical data, and includes experiments on synthetic and
real-world protein datasets.
Related papers
- Embedding-based statistical inference on generative models [10.948308354932639]
We extend results related to embedding-based representations of generative models to classical statistical inference settings.
We demonstrate that using the perspective space as the basis of a notion of "similar" is effective for multiple model-level inference tasks.
arXiv Detail & Related papers (2024-10-01T22:28:39Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Transfer Learning for Diffusion Models [43.10840361752551]
Diffusion models consistently produce high-quality synthetic samples.
They can be impractical in real-world applications due to high collection costs or associated risks.
This paper introduces the Transfer Guided Diffusion Process (TGDP), a novel approach distinct from conventional finetuning and regularization methods.
arXiv Detail & Related papers (2024-05-27T06:48:58Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
We introduce a novel Multi-Granularity Time Series (MG-TSD) model, which achieves state-of-the-art predictive performance.
Our approach does not rely on additional external data, making it versatile and applicable across various domains.
arXiv Detail & Related papers (2024-03-09T01:15:03Z) - Fair Sampling in Diffusion Models through Switching Mechanism [5.560136885815622]
We propose a fairness-aware sampling method called textitattribute switching mechanism for diffusion models.
We mathematically prove and experimentally demonstrate the effectiveness of the proposed method on two key aspects.
arXiv Detail & Related papers (2024-01-06T06:55:26Z) - Fast Sampling via Discrete Non-Markov Diffusion Models [49.598085130313514]
We propose a discrete non-Markov diffusion model, which admits an accelerated reverse sampling for discrete data generation.
Our method significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Learning Data Representations with Joint Diffusion Models [20.25147743706431]
Joint machine learning models that allow synthesizing and classifying data often offer uneven performance between those tasks or are unstable to train.
We extend the vanilla diffusion model with a classifier that allows for stable joint end-to-end training with shared parameterization between those objectives.
The resulting joint diffusion model outperforms recent state-of-the-art hybrid methods in terms of both classification and generation quality on all evaluated benchmarks.
arXiv Detail & Related papers (2023-01-31T13:29:19Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.