論文の概要: DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models
- arxiv url: http://arxiv.org/abs/2301.13629v2
- Date: Tue, 27 Jun 2023 04:11:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 17:39:02.962878
- Title: DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models
- Title(参考訳): DiffSTG:拡散モデルを用いた確率的時空間グラフ予測
- Authors: Haomin Wen, Youfang Lin, Yutong Xia, Huaiyu Wan, Qingsong Wen, Roger
Zimmermann, Yuxuan Liang
- Abstract要約: 本稿では,不確実性や複雑な依存関係のモデル化が困難であることから,確率的STG予測に焦点をあてる。
本稿では,一般的な拡散モデルをSTGに一般化する最初の試みとして,DiffSTGと呼ばれる新しい非自己回帰フレームワークを提案する。
提案手法は,本質的時間学習能力STNNと拡散モデルの不確実性測定を組み合わせたものである。
- 参考スコア(独自算出の注目度): 45.63764183970835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatio-temporal graph neural networks (STGNN) have emerged as the dominant
model for spatio-temporal graph (STG) forecasting. Despite their success, they
fail to model intrinsic uncertainties within STG data, which cripples their
practicality in downstream tasks for decision-making. To this end, this paper
focuses on probabilistic STG forecasting, which is challenging due to the
difficulty in modeling uncertainties and complex ST dependencies. In this
study, we present the first attempt to generalize the popular denoising
diffusion probabilistic models to STGs, leading to a novel non-autoregressive
framework called DiffSTG, along with the first denoising network UGnet for STG
in the framework. Our approach combines the spatio-temporal learning
capabilities of STGNNs with the uncertainty measurements of diffusion models.
Extensive experiments validate that DiffSTG reduces the Continuous Ranked
Probability Score (CRPS) by 4%-14%, and Root Mean Squared Error (RMSE) by 2%-7%
over existing methods on three real-world datasets.
- Abstract(参考訳): 時空間グラフニューラルネットワーク(STGNN)が時空間グラフ(STG)予測の主流モデルとなっている。
成功にもかかわらず、STGデータ内の本質的な不確実性のモデル化には失敗し、意思決定の下流タスクにおける実用性を損なう。
本稿では,不確実性や複雑なST依存のモデル化が困難であることから,確率的STG予測に焦点をあてる。
本研究では,STGの拡散確率モデルを一般化する最初の試みとして,DiffSTGと呼ばれる新しい非自己回帰的フレームワークと,STGのためのネットワークUGnetを提案する。
提案手法は,STGNNの時空間学習能力と拡散モデルの不確実性測定を組み合わせたものである。
広範な実験により、diffstgは連続ランク付き確率スコア(crps)を4%-14%削減し、ルート平均二乗誤差(rmse)を3つの実世界のデータセット上の既存の方法よりも2%-7%削減できることが確認された。
関連論文リスト
- Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model [45.45700202300292]
CaPaintは2段階のプロセスで因果推論能力を備えたデータとエンドウモデルの因果領域を特定することを目的としている。
微調整未条件拡散確率モデル(DDPM)を生成前として, 環境成分として定義されたマスクを埋め込む。
5つの実世界のSTベンチマークで実施された実験は、CaPaintの概念の統合により、モデルが4.3%から77.3%の改善を達成できることを示した。
論文 参考訳(メタデータ) (2024-09-29T08:18:50Z) - STG-Mamba: Spatial-Temporal Graph Learning via Selective State Space Model [11.211981320116323]
本稿では、STG学習のための強力な選択状態空間モデルを活用するための最初の探索として、空間時空間グラフマンバ(STG-Mamba)を紹介する。
STG-MambaはSTGネットワークをシステムとして扱い、時間次元にわたってSTGシステムの動的状態の進化を慎重に探求する。
STG予測性能の点で既存の最先端手法を超えるだけでなく、大規模グラフネットワークの計算ボトルネックを効果的に緩和する。
論文 参考訳(メタデータ) (2024-03-19T04:02:57Z) - Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and
Treatment [33.4989883914555]
本研究では,時間的アウト・オブ・ディストリビューション問題と動的空間因果関係に対処するCaSTと呼ばれる新しいフレームワークを提案する。
実世界の3つのデータセットに対する実験結果は、CaSTの有効性と実用性を示している。
論文 参考訳(メタデータ) (2023-09-23T13:51:09Z) - Exploring the Relationship between Samples and Masks for Robust Defect
Localization [1.90365714903665]
本稿では,モデルプロセスなしで欠陥パターンを直接検出する一段階フレームワークを提案する。
欠陥の位置を示す可能性のある明示的な情報は、直接マッピングを学ぶことを避けるために意図的に除外される。
その結果,提案手法はF1-ScoreのSOTA法よりも2.9%高い値を示した。
論文 参考訳(メタデータ) (2023-06-19T06:41:19Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Cloud Failure Prediction with Hierarchical Temporary Memory: An
Empirical Assessment [64.73243241568555]
Hierarchical Temporary Memory (HTM) は、新皮質の特徴にインスパイアされた教師なし学習アルゴリズムである。
本稿では,障害予測の文脈でHTMを評価する最初の体系的研究について述べる。
論文 参考訳(メタデータ) (2021-10-06T07:09:45Z) - Spatio-Temporal Graph Contrastive Learning [49.132528449909316]
これらの問題に対処するための時空間グラフコントラスト学習フレームワーク(STGCL)を提案する。
グラフ構造、時間領域、周波数領域の4種類のデータ拡張について詳述する。
我々のフレームワークは、実世界の3つのデータセットと4つの最先端モデルで評価されている。
論文 参考訳(メタデータ) (2021-08-26T16:05:32Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
グラフニューラルネットワークは、十分な高品質のトレーニングデータがないために、現実のシナリオでは実用的ではないかもしれない。
我々は時間的データを解析するための数学的に設計された新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2020-12-06T19:49:55Z) - Spatiotemporal Adaptive Neural Network for Long-term Forecasting of
Financial Time Series [0.2793095554369281]
本稿では,ディープニューラルネットワーク(DNN)が時系列予測(TS)の同時予測に利用できるかどうかを検討する。
動的因子グラフ(DFG)を用いて多変量自己回帰モデルを構築する。
ACTMでは、TSモデルの自己回帰順序を時間とともに変化させ、より大きな確率分布をモデル化することができる。
論文 参考訳(メタデータ) (2020-03-27T00:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。