CSDN: Combing Shallow and Deep Networks for Accurate Real-time
Segmentation of High-definition Intravascular Ultrasound Images
- URL: http://arxiv.org/abs/2301.13648v1
- Date: Mon, 30 Jan 2023 14:42:48 GMT
- Title: CSDN: Combing Shallow and Deep Networks for Accurate Real-time
Segmentation of High-definition Intravascular Ultrasound Images
- Authors: Shaofeng Yuan, Feng Yang
- Abstract summary: We propose a two-stream framework for efficient segmentation of 60 MHz high resolution IVUS images.
It combines shallow and deep networks, namely, CSDN.
Treating the above information separately enables learning a model to achieve high accuracy and high efficiency for accurate real-time segmentation.
- Score: 4.062948258086793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intravascular ultrasound (IVUS) is the preferred modality for capturing
real-time and high resolution cross-sectional images of the coronary arteries,
and evaluating the stenosis. Accurate and real-time segmentation of IVUS images
involves the delineation of lumen and external elastic membrane borders. In
this paper, we propose a two-stream framework for efficient segmentation of 60
MHz high resolution IVUS images. It combines shallow and deep networks, namely,
CSDN. The shallow network with thick channels focuses to extract low-level
details. The deep network with thin channels takes charge of learning
high-level semantics. Treating the above information separately enables
learning a model to achieve high accuracy and high efficiency for accurate
real-time segmentation. To further improve the segmentation performance, mutual
guided fusion module is used to enhance and fuse both different types of
feature representation. The experimental results show that our CSDN
accomplishes a good trade-off between analysis speed and segmentation accuracy.
Related papers
- Vascular Segmentation of Functional Ultrasound Images using Deep Learning [0.0]
We introduce the first deep learning-based segmentation tool for functional ultrasound (fUS) images.
We achieve competitive segmentation performance, with 90% accuracy, with 71% robustness and an IU of 0.59, using only 100 temporal frames from a fUS stack.
This work offers a non-invasive, cost-effective alternative to localization microscopy, enhancing fUS data interpretation and improving understanding of vessel function.
arXiv Detail & Related papers (2024-10-28T09:00:28Z) - MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
This paper proposes a feature-enhanced interaction network based on DPCN, named MDFI-Net.
The proposed MDFI-Net achieves segmentation performance superior to state-of-the-art methods on public datasets.
arXiv Detail & Related papers (2024-10-20T16:42:22Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
Blinding eye diseases are often correlated with altered retinal morphology, which can be clinically identified by segmenting retinal structures in fundus images.
Deep learning has shown promise in medical image segmentation, but its reliance on repeated convolution and pooling operations can hinder the representation of edge information.
We propose a lightweight pixel-level CNN named LMBiS-Net for the segmentation of retinal vessels with an exceptionally low number of learnable parameters.
arXiv Detail & Related papers (2023-09-10T09:03:53Z) - Feature Enhancer Segmentation Network (FES-Net) for Vessel Segmentation [19.455350961592742]
We propose a novel feature enhancement segmentation network (FES-Net) that achieves accurate pixel-wise segmentation without requiring additional image enhancement steps.
FES-Net directly processes the input image and utilizes four prompt convolutional blocks (PCBs) during downsampling.
We evaluate the performance of FES-Net on four publicly available state-of-the-art datasets: DRIVE, STARE, CHASE, and HRF.
arXiv Detail & Related papers (2023-09-07T07:46:46Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
Anatomical segmentation of organs in ultrasound images is essential to many clinical applications.
Existing deep neural networks require a large amount of labeled data for training in order to achieve clinically acceptable performance.
In this paper, we propose a novel approach for learning to optimize task-based ultra-sound image representations.
arXiv Detail & Related papers (2023-07-29T16:29:39Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.