Feature Enhancer Segmentation Network (FES-Net) for Vessel Segmentation
- URL: http://arxiv.org/abs/2309.03535v1
- Date: Thu, 7 Sep 2023 07:46:46 GMT
- Title: Feature Enhancer Segmentation Network (FES-Net) for Vessel Segmentation
- Authors: Tariq M. Khan, Muhammad Arsalan, Shahzaib Iqbal, Imran Razzak, Erik
Meijering
- Abstract summary: We propose a novel feature enhancement segmentation network (FES-Net) that achieves accurate pixel-wise segmentation without requiring additional image enhancement steps.
FES-Net directly processes the input image and utilizes four prompt convolutional blocks (PCBs) during downsampling.
We evaluate the performance of FES-Net on four publicly available state-of-the-art datasets: DRIVE, STARE, CHASE, and HRF.
- Score: 19.455350961592742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diseases such as diabetic retinopathy and age-related macular degeneration
pose a significant risk to vision, highlighting the importance of precise
segmentation of retinal vessels for the tracking and diagnosis of progression.
However, existing vessel segmentation methods that heavily rely on
encoder-decoder structures struggle to capture contextual information about
retinal vessel configurations, leading to challenges in reconciling semantic
disparities between encoder and decoder features. To address this, we propose a
novel feature enhancement segmentation network (FES-Net) that achieves accurate
pixel-wise segmentation without requiring additional image enhancement steps.
FES-Net directly processes the input image and utilizes four prompt
convolutional blocks (PCBs) during downsampling, complemented by a shallow
upsampling approach to generate a binary mask for each class. We evaluate the
performance of FES-Net on four publicly available state-of-the-art datasets:
DRIVE, STARE, CHASE, and HRF. The evaluation results clearly demonstrate the
superior performance of FES-Net compared to other competitive approaches
documented in the existing literature.
Related papers
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
This paper proposes a feature-enhanced interaction network based on DPCN, named MDFI-Net.
The proposed MDFI-Net achieves segmentation performance superior to state-of-the-art methods on public datasets.
arXiv Detail & Related papers (2024-10-20T16:42:22Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Rethinking Boundary Detection in Deep Learning Models for Medical Image
Segmentation [27.322629156662547]
A novel network architecture, referred to as Convolution, Transformer, and Operator (CTO) is proposed.
CTO employs a combination of Convolutional Neural Networks (CNNs), Vision Transformer (ViT), and an explicit boundary detection operator to achieve high recognition accuracy.
The performance of the proposed method is evaluated on six challenging medical image segmentation datasets.
arXiv Detail & Related papers (2023-05-01T06:13:08Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Net is a novel network for automatic COVID-19 lung infection segmentation from CT images.
BCS-Net follows an encoder-decoder architecture, and more designs focus on the decoder stage.
In each BCSR block, the attention-guided global context (AGGC) module is designed to learn the most valuable encoder features for decoder.
arXiv Detail & Related papers (2022-07-17T08:54:07Z) - A generalizable approach based on U-Net model for automatic Intra
retinal cyst segmentation in SD-OCT images [1.6114012813668928]
We propose a new U-Net-based approach for Intra retinal cyst segmentation across different vendors.
In the first step, we inject the information into the network in a way that overcomes some of the network limitations in receiving data.
And in the next step, we introduced a connection module between encoder and decoder parts of the standard U-Net architecture.
arXiv Detail & Related papers (2022-02-01T15:23:00Z) - Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images [0.0]
An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research.
A deep learning based method has been proposed and several customized modules have been integrated into the well-known encoder-decoder architecture U-net.
As a result, the proposed method outperforms the work of predecessors and achieves state-of-the-art performance in Sensitivity/Recall, F1-score and MCC.
arXiv Detail & Related papers (2021-03-25T06:10:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - MPG-Net: Multi-Prediction Guided Network for Segmentation of Retinal
Layers in OCT Images [11.370735571629602]
We propose a novel multiprediction guided attention network (MPG-Net) for automated retinal layer segmentation in OCT images.
MPG-Net consists of two major steps to strengthen the discriminative power of a U-shape Fully convolutional network (FCN) for reliable automated segmentation.
arXiv Detail & Related papers (2020-09-28T21:22:22Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.