Identifying the Hazard Boundary of ML-enabled Autonomous Systems Using
Cooperative Co-Evolutionary Search
- URL: http://arxiv.org/abs/2301.13807v3
- Date: Mon, 16 Oct 2023 14:47:29 GMT
- Title: Identifying the Hazard Boundary of ML-enabled Autonomous Systems Using
Cooperative Co-Evolutionary Search
- Authors: Sepehr Sharifi, Donghwan Shin, Lionel C. Briand and Nathan Aschbacher
- Abstract summary: It is essential to identify the hazard boundary of ML Components (MLCs) in the Machine Learning-enabled autonomous systems under analysis.
We propose MLCSHE, a novel method based on a Cooperative Co-Evolutionary Algorithm (CCEA)
We evaluate the effectiveness and efficiency of MLCSHE on a complex Autonomous Vehicle (AV) case study.
- Score: 9.511076358998073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Machine Learning (ML)-enabled autonomous systems (MLASs), it is essential
to identify the hazard boundary of ML Components (MLCs) in the MLAS under
analysis. Given that such boundary captures the conditions in terms of MLC
behavior and system context that can lead to hazards, it can then be used to,
for example, build a safety monitor that can take any predefined fallback
mechanisms at runtime when reaching the hazard boundary. However, determining
such hazard boundary for an ML component is challenging. This is due to the
problem space combining system contexts (i.e., scenarios) and MLC behaviors
(i.e., inputs and outputs) being far too large for exhaustive exploration and
even to handle using conventional metaheuristics, such as genetic algorithms.
Additionally, the high computational cost of simulations required to determine
any MLAS safety violations makes the problem even more challenging.
Furthermore, it is unrealistic to consider a region in the problem space
deterministically safe or unsafe due to the uncontrollable parameters in
simulations and the non-linear behaviors of ML models (e.g., deep neural
networks) in the MLAS under analysis. To address the challenges, we propose
MLCSHE (ML Component Safety Hazard Envelope), a novel method based on a
Cooperative Co-Evolutionary Algorithm (CCEA), which aims to tackle a
high-dimensional problem by decomposing it into two lower-dimensional search
subproblems. Moreover, we take a probabilistic view of safe and unsafe regions
and define a novel fitness function to measure the distance from the
probabilistic hazard boundary and thus drive the search effectively. We
evaluate the effectiveness and efficiency of MLCSHE on a complex Autonomous
Vehicle (AV) case study. Our evaluation results show that MLCSHE is
significantly more effective and efficient compared to a standard genetic
algorithm and random search.
Related papers
- Model-free Motion Planning of Autonomous Agents for Complex Tasks in
Partially Observable Environments [3.7660066212240753]
Motion planning of autonomous agents in partially known environments is a challenging problem.
This paper proposes a model-free reinforcement learning approach to address this problem.
We show that our proposed method effectively addresses environment, action, and observation uncertainties.
arXiv Detail & Related papers (2023-04-30T19:57:39Z) - Learned Risk Metric Maps for Kinodynamic Systems [54.49871675894546]
We present Learned Risk Metric Maps for real-time estimation of coherent risk metrics of high dimensional dynamical systems.
LRMM models are simple to design and train, requiring only procedural generation of obstacle sets, state and control sampling, and supervised training of a function approximator.
arXiv Detail & Related papers (2023-02-28T17:51:43Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved.
The uncertainties in the behaviour of the traffic participants and the dynamic world cause reactions in advanced autonomous systems.
This paper presents an efficient falsification method to evaluate the System Under Test.
arXiv Detail & Related papers (2020-11-16T02:56:13Z) - Learning with Safety Constraints: Sample Complexity of Reinforcement
Learning for Constrained MDPs [13.922754427601491]
We characterize the relationship between safety constraints and the number of samples needed to ensure a desired level of accuracy.
Our main finding is that compared to the best known bounds of the unconstrained regime, the sample of constrained RL algorithms are increased by a factor that is logarithmic in the number of constraints.
arXiv Detail & Related papers (2020-08-01T18:17:08Z) - ConAML: Constrained Adversarial Machine Learning for Cyber-Physical
Systems [7.351477761427584]
We study the potential vulnerabilities of machine learning applied in cyber-physical systems.
We propose Constrained Adversarial Machine Learning (ConAML) which generates adversarial examples that satisfy the intrinsic constraints of the physical systems.
arXiv Detail & Related papers (2020-03-12T05:59:56Z) - Towards Probability-based Safety Verification of Systems with Components
from Machine Learning [8.75682288556859]
Safety verification of machine learning systems is currently thought to be infeasible or, at least, very hard.
We think that it requires taking into account specific properties of ML technology such as: (i) Most ML approaches are inductive, which is both their power and their source of error.
We propose verification based on probabilities of errors both estimated by controlled experiments and output by the inductively learned itself.
arXiv Detail & Related papers (2020-03-02T19:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.