論文の概要: Large Language Models are Versatile Decomposers: Decompose Evidence and
Questions for Table-based Reasoning
- arxiv url: http://arxiv.org/abs/2301.13808v3
- Date: Thu, 27 Apr 2023 11:24:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 16:35:38.126632
- Title: Large Language Models are Versatile Decomposers: Decompose Evidence and
Questions for Table-based Reasoning
- Title(参考訳): 大規模言語モデルは、テーブルベースの推論のためのエビデンスと質問を分解する
- Authors: Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, Yongbin Li
- Abstract要約: 大規模言語モデル(LLM)を効率的なテーブルベースの推論のためのデコンパイラとして活用する。
巨大な証拠(巨大な表)をサブエビデンス(小さな表)に分解し、無駄な情報の干渉を軽減する。
我々は,思考連鎖のジレンマを軽減するために,「パーシング・エグゼクティオン・フィリング」戦略を提案する。
- 参考スコア(独自算出の注目度): 45.013230888670435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table-based reasoning has shown remarkable progress in combining deep models
with discrete reasoning, which requires reasoning over both free-form natural
language (NL) questions and structured tabular data. However, previous
table-based reasoning solutions usually suffer from significant performance
degradation on huge evidence (tables). In addition, most existing methods
struggle to reason over complex questions since the required information is
scattered in different places. To alleviate the above challenges, we exploit
large language models (LLMs) as decomposers for effective table-based
reasoning, which (i) decompose huge evidence (a huge table) into sub-evidence
(a small table) to mitigate the interference of useless information for table
reasoning; and (ii) decompose complex questions into simpler sub-questions for
text reasoning. Specifically, we first use the LLMs to break down the evidence
(tables) involved in the current question, retaining the relevant evidence and
excluding the remaining irrelevant evidence from the huge table. In addition,
we propose a "parsing-execution-filling" strategy to alleviate the
hallucination dilemma of the chain of thought by decoupling logic and numerical
computation in each step. Extensive experiments show that our method can
effectively leverage decomposed evidence and questions and outperforms the
strong baselines on TabFact, WikiTableQuestion, and FetaQA datasets. Notably,
our model outperforms human performance for the first time on the TabFact
dataset.
- Abstract(参考訳): 表に基づく推論は、深層モデルと離散的推論の組み合わせにおいて顕著な進歩を示しており、自由形式自然言語(NL)問題と構造化表データの両方を推論する必要がある。
しかしながら、従来のテーブルベースの推論ソリューションは通常、巨大なエビデンス(テーブル)の大幅な性能劣化に悩まされる。
さらに、既存のほとんどの手法は、必要な情報が様々な場所に散らばっているため、複雑な問題に対する推論に苦慮している。
上記の課題を緩和するため、我々はテーブルベースの効果的な推論のための分解器として大規模言語モデル(LLM)を利用する。
一 巨大な証拠(巨大な表)を小表(小表)に分解して、無用な情報によるテーブル推論の干渉を緩和すること。
(ii)複雑な質問をテキスト推論のより単純なサブ質問に分解する。
具体的には、まずLLMを使用して、現在の質問に関わる証拠(表)を分解し、関連する証拠を保持し、巨大なテーブルから残りの無関係な証拠を除外します。
さらに,各ステップで論理と数値計算を分離することにより,思考の連鎖の幻覚的ジレンマを軽減する「パーシング・エグゼクティオン・フィリング」戦略を提案する。
本手法は,TabFact,WikiTableQuestion,FetaQAデータセットにおいて,分解されたエビデンスや疑問を効果的に活用し,強力なベースラインを達成できることを示す。
特に、我々のモデルは、TabFactデータセットで人のパフォーマンスを初めて上回ります。
関連論文リスト
- Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding [42.841205217768106]
トレー・オブ・タブル(Tree-of-Table)は、LLMが大規模で複雑なテーブル上での推論能力を高めるために設計された新しいアプローチである。
Tree-of-Tableは優れた性能を持つ新しいベンチマークをセットし、大規模テーブル推論における顕著な効率性と一般化能力を示す。
論文 参考訳(メタデータ) (2024-11-13T11:02:04Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - ALTER: Augmentation for Large-Table-Based Reasoning [5.164923314261229]
ALTER(Augmentation for Large-Table-Based Reasoning)は、NL (Free-form Natural Language) とNL (Augmentation for Large-Table-Based Reasoning) の双方の質問において、潜在的な拡張可能性を活用するために設計されたフレームワークである。
テーブルからの関連データの小さなサブセットのみを利用することで、ALTERはテーブルベースの推論ベンチマークで優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-07-03T12:34:45Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
本稿では,2段階のプロセスにシンボル的アプローチと意味的アプローチ(テキスト的アプローチ)を統合し,制約に対処する新しいアルゴリズムを提案する。
実験の結果,H-STARは3つの質問応答(QA)と事実検証データセットにおいて,最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-29T21:24:19Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
弱い教師付きベンチマークであるtextscPuzzleBen について,25,147 の複雑な質問,回答,人為的合理性からなる。
データセットのユニークな側面は、10,000の未注釈の質問を含めることであり、LLMの推論能力を高めるために、より少ないスーパーサイズのデータを活用することができる。
論文 参考訳(メタデータ) (2024-05-07T07:39:15Z) - TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition [6.253771639590562]
テーブル推論は、自然言語の質問と構造化データの両方を理解する必要がある難しいタスクである。
テキスト・ツー・ジェネレーションを利用したテーブルを,より小さく,関連するサブテーブルに分解する新しい方法であるTabifyを提案する。
WikiTQベンチマークでは,64.7%の精度で精度が向上した。
論文 参考訳(メタデータ) (2024-04-15T21:42:20Z) - Chain-of-Table: Evolving Tables in the Reasoning Chain for Table
Understanding [79.9461269253121]
そこで我々は、中間思考のプロキシとして、図表データを推論チェーンで明示的に使用するChain-of-Tableフレームワークを提案する。
Chain-of-TableはWikiTQ、FeTaQA、TabFactベンチマークで最新のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-01-09T07:46:26Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
LLaMA2モデル上でパラメータ効率の良い微調整を行う。
我々のアプローチは、テーブル固有の行データを強調することにより、推論情報を入力に注入することである。
FetaQAデータセットとQTSummデータセットの両方で、我々のアプローチは最先端の結果を得た。
論文 参考訳(メタデータ) (2023-11-15T12:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。