論文の概要: ALTER: Augmentation for Large-Table-Based Reasoning
- arxiv url: http://arxiv.org/abs/2407.03061v1
- Date: Wed, 3 Jul 2024 12:34:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:26:01.171876
- Title: ALTER: Augmentation for Large-Table-Based Reasoning
- Title(参考訳): ALTER: 大規模テーブルベースの推論のための拡張
- Authors: Han Zhang, Yuheng Ma, Hanfang Yang,
- Abstract要約: ALTER(Augmentation for Large-Table-Based Reasoning)は、NL (Free-form Natural Language) とNL (Augmentation for Large-Table-Based Reasoning) の双方の質問において、潜在的な拡張可能性を活用するために設計されたフレームワークである。
テーブルからの関連データの小さなサブセットのみを利用することで、ALTERはテーブルベースの推論ベンチマークで優れたパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 5.164923314261229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While extensive research has explored the use of large language models (LLMs) for table-based reasoning, most approaches struggle with scalability when applied to large tables. To maintain the superior comprehension abilities of LLMs in these scenarios, we introduce ALTER(Augmentation for Large-Table-Based Reasoning)-a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions, via the query augmentor, and semi-structured tabular data, through the table augmentor. By utilizing only a small subset of relevant data from the table and supplementing it with pre-augmented schema, semantic, and literal information, ALTER achieves outstanding performance on table-based reasoning benchmarks. We also provide a detailed analysis of large-table scenarios, comparing different methods and various partitioning principles. In these scenarios, our method outperforms all other approaches and exhibits robustness and efficiency against perturbations.
- Abstract(参考訳): 大規模言語モデル(LLM)をテーブルベースの推論に利用することについて広範な研究が行われてきたが、ほとんどのアプローチは大規模テーブルに適用した場合のスケーラビリティに苦慮している。
これらのシナリオにおいてLLMの優れた理解能力を維持するために,クエリオーグメンタおよび半構造化表データを介して,自由形式自然言語(NL)問合せにおける潜時拡張可能性を活用するために設計されたALTER(Augmentation for Large-Table-based Reasoning)フレームワークを導入する。
テーブルからの関連データの小さなサブセットのみを利用し、拡張済みスキーマ、セマンティック、リテラル情報で補足することにより、ALTERはテーブルベースの推論ベンチマークで優れたパフォーマンスを達成する。
また、様々な方法と様々なパーティショニング原則を比較しながら、大規模なシナリオを詳細に分析する。
これらのシナリオでは,本手法は他の手法よりも優れ,摂動に対する堅牢性と効率性を示す。
関連論文リスト
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - A Survey of Table Reasoning with Large Language Models [55.2326738851157]
大規模言語モデル(LLM)の使用は、テーブル推論の主流となる。
LLM時代におけるテーブル推論性能の向上に使用される主流技術について分析する。
本研究は,既存手法の改良と実用化の拡充の両面から研究の方向性を示す。
論文 参考訳(メタデータ) (2024-02-13T07:17:52Z) - Chain-of-Table: Evolving Tables in the Reasoning Chain for Table
Understanding [79.9461269253121]
そこで我々は、中間思考のプロキシとして、図表データを推論チェーンで明示的に使用するChain-of-Tableフレームワークを提案する。
Chain-of-TableはWikiTQ、FeTaQA、TabFactベンチマークで最新のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-01-09T07:46:26Z) - Rethinking Tabular Data Understanding with Large Language Models [39.38132513255292]
本研究では,大規模言語モデル(LLM)のテーブル構造摂動に対する堅牢性について検討する。
我々は,同じ内容を示す表の構造的差異が,特に記号的推論タスクにおいて顕著な性能低下を示すことを示した。
テキストおよび記号的推論経路の集約は, 混合自己整合機構によって促進され, SOTA性能が73.6%向上し, WIKITABLEQUESTIONSの精度が向上した。
論文 参考訳(メタデータ) (2023-12-27T19:58:52Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
LLaMA2モデル上でパラメータ効率の良い微調整を行う。
我々のアプローチは、テーブル固有の行データを強調することにより、推論情報を入力に注入することである。
FetaQAデータセットとQTSummデータセットの両方で、我々のアプローチは最先端の結果を得た。
論文 参考訳(メタデータ) (2023-11-15T12:02:52Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
大規模言語モデル(LLM)は、最近、複雑な推論タスクを実行する能力に対して、かなりの関心を集めている。
より構造的なチェーン・オブ・シークレット・ステップの創出を促す階層的な生成手法を提案する。
提案手法では、トレーニング可能なパラメータ(0.001%)の無視可能な増加が必要であり、完全な微調整か、よりパラメータ効率の良いスキームで適用することができる。
論文 参考訳(メタデータ) (2023-10-09T13:29:37Z) - Large Language Models are Versatile Decomposers: Decompose Evidence and
Questions for Table-based Reasoning [45.013230888670435]
大規模言語モデル(LLM)を効率的なテーブルベースの推論のためのデコンパイラとして活用する。
巨大な証拠(巨大な表)をサブエビデンス(小さな表)に分解し、無駄な情報の干渉を軽減する。
我々は,思考連鎖のジレンマを軽減するために,「パーシング・エグゼクティオン・フィリング」戦略を提案する。
論文 参考訳(メタデータ) (2023-01-31T17:51:45Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。