Enhanced quantum properties of shallow diamond atomic defects through
nitrogen surface termination
- URL: http://arxiv.org/abs/2301.13824v1
- Date: Tue, 31 Jan 2023 18:08:19 GMT
- Title: Enhanced quantum properties of shallow diamond atomic defects through
nitrogen surface termination
- Authors: R. Malkinson, M. K. Kuntumalla, A. Hoffman and N. Bar-Gill
- Abstract summary: Nitrogen vacancy (NV) centers in diamond have emerged in recent years as leading quantum sensors in various modalities.
We demonstrate a novel surface termination technique based on nitrogen plasma under non-damaging conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nitrogen vacancy (NV) centers in diamond have emerged in recent years as
leading quantum sensors in various modalities. Most applications benefit from
shallow NVs, enabling higher sensitivity and resolution. However, near surface
NVs ($<$ 20 nm depth) suffer from reduced stability and coherence properties
due to additional noise. We demonstrate a novel surface termination technique
based on nitrogen plasma under non-damaging conditions, achieving significant
improvement in NV optical stability and quantum coherence.
Related papers
- Optically Coherent Nitrogen-Vacancy Centers in HPHT Treated Diamonds [6.576597801995822]
nitrogen-vacancy (NV) center in diamond has attracted much attention in the fields of quantum sensing, quantum simulation, and quantum networks.
In this work, we demonstrate a non-destructive method to fabricate optically coherent NV centers.
arXiv Detail & Related papers (2024-09-26T00:29:34Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Detecting nitrogen-vacancy-hydrogen centers on the nanoscale using
nitrogen-vacancy centers in diamond [0.0]
nitrogen-vacancy-hydrogen complex (NVH) outnumbers the nitrogen vacancy (NV) defect by at least one order of magnitude creating a dense spin bath.
Monitoring and controlling the spin bath is essential to produce and understand engineered diamond material with high NV concentrations for quantum applications.
arXiv Detail & Related papers (2023-11-30T15:30:36Z) - Mitigation of Nitrogen Vacancy Ionization from Material Integration for
Quantum Sensing [0.0]
The nitrogen-vacancy (NV) color center in diamond has demonstrated great promise in a wide range of quantum sensing.
The insulating layer of alumina between the metal and diamond provide improved photoluminescence and higher sensitivity in all modes of sensing.
arXiv Detail & Related papers (2023-04-13T03:10:53Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - Optically coherent nitrogen-vacancy defect centers in diamond
nanostructures [0.0]
Nitrogen-vacancy defect centers (NVs) in diamond act as quantum memories and can be interfaced by coherent photons.
We present strategies to significantly reduce the electric noise in diamond nanostructures.
We propose an entanglement protocol for nanostructure-coupled NVs providing entanglement generation rates up to hundreds of kHz.
arXiv Detail & Related papers (2022-03-10T19:42:43Z) - Impact of surface and laser-induced noise on the spectral stability of
implanted nitrogen-vacancy centers in diamond [0.0]
quantum network technologies utilize the nitrogen vacancy center in diamond.
We create single NV centers by $15$N ion implantation and high-temperature vacuum annealing.
Long-term stability of the NV$-$ charge state and emission frequency is demonstrated.
arXiv Detail & Related papers (2021-05-20T03:03:51Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.