Optically coherent nitrogen-vacancy defect centers in diamond
nanostructures
- URL: http://arxiv.org/abs/2203.05605v1
- Date: Thu, 10 Mar 2022 19:42:43 GMT
- Title: Optically coherent nitrogen-vacancy defect centers in diamond
nanostructures
- Authors: Laura Orphal-Kobin, Kilian Unterguggenberger, Tommaso Pregnolato,
Natalia Kemf, Matthias Matalla, Ralph-Stephan Unger, Ina Ostermay, Gregor
Pieplow, Tim Schr\"oder
- Abstract summary: Nitrogen-vacancy defect centers (NVs) in diamond act as quantum memories and can be interfaced by coherent photons.
We present strategies to significantly reduce the electric noise in diamond nanostructures.
We propose an entanglement protocol for nanostructure-coupled NVs providing entanglement generation rates up to hundreds of kHz.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optically active solid-state spin defects have the potential to become a
versatile resource for quantum information processing applications.
Nitrogen-vacancy defect centers (NV) in diamond act as quantum memories and can
be interfaced by coherent photons as demonstrated in entanglement protocols.
However, in particular in diamond nanostructures, the effect of spectral
diffusion leads to optical decoherence hindering entanglement generation. In
this work, we present strategies to significantly reduce the electric noise in
diamond nanostructures. We demonstrate single NVs in nanopillars exhibiting
lifetime-limited linewidth on the time scale of one second and long-term
spectral stability with inhomogeneous linewidth as low as 150 MHz over three
minutes. Excitation power and energy-dependent measurements in combination with
nanoscopic Monte Carlo simulations contribute to a better understanding of the
impact of bulk and surface defects on the NV's spectral properties. Finally, we
propose an entanglement protocol for nanostructure-coupled NVs providing
entanglement generation rates up to hundreds of kHz.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Enhanced Spectral Density of a Single Germanium Vacancy Center in a
Nanodiamond by Cavity-Integration [35.759786254573896]
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV$-$), are promising candidates for many applications of quantum optics.
We demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P'erot microcavity.
arXiv Detail & Related papers (2023-07-03T10:33:06Z) - Multicone Diamond Waveguides for Nanoscale Quantum Sensing [0.5131152350448099]
The electronic spin of the nitrogen-vacancy center in diamond is a promising quantum sensor for detecting nanoscopic magnetic and electric fields.
Here, we address the challenge of the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques.
We optimize the structure in simulation, observing an increase in collection efficiency for tall ($geq$ 5 $mu$m) pillars with tapered sidewalls.
An optimized device yields increased SNR, owing to improvements in collimation and directionality of emission.
arXiv Detail & Related papers (2023-06-05T15:28:12Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Spectrally stable nitrogen-vacancy centers in diamond formed by carbon
implantation into thin microstructures [0.0]
The nitrogen-vacancy center (NV) in diamond is increasingly used as a quantum sensor and as a building block for quantum networks.
We demonstrate that implantation of carbon ions yields a comparable density of NVs as implantation of nitrogen ions.
We propose a modified NV creation procedure in which the implantation is carried out after instead of before the diamond fabrication processes.
arXiv Detail & Related papers (2022-09-16T18:00:19Z) - Optical interaction of the NV- centre in diamond with a plasmonic metal
nanoparticle [0.0]
We present a rigorous theoretical model for the optical interaction between a nitrogen-vacancy centre in diamond and a plasmonic metal nanoparticles.
We show that the NV-plasmon interaction provides a versatile new avenue to enhance and control the optical emission of an NV centre.
arXiv Detail & Related papers (2022-02-10T05:59:27Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Resonant Excitation and Purcell Enhancement of Coherent Nitrogen-Vacancy
Centers Coupled to a Fabry-P\'{e}rot Micro-Cavity [0.0]
nitrogen-vacancy (NV) center in diamond has been established as a prime building block for quantum networks.
Poor optical coherence of near-surface NV centers has so far prevented their resonant optical control, as would be required for entanglement generation.
We demonstrate resonant addressing of individual, fiber-cavity-coupled NV centers, and collection of their Purcell-enhanced coherent photon emission.
arXiv Detail & Related papers (2020-09-17T10:48:16Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.