A Mathematical Model for Curriculum Learning for Parities
- URL: http://arxiv.org/abs/2301.13833v2
- Date: Tue, 23 Apr 2024 01:44:30 GMT
- Title: A Mathematical Model for Curriculum Learning for Parities
- Authors: Elisabetta Cornacchia, Elchanan Mossel,
- Abstract summary: We introduce a CL model for learning the class of k-parities on d bits of a binary string with a neural network trained by gradient descent.
We show that a wise choice of training examples involving two or more product distributions, allows to reduce significantly the computational cost of learning this class of functions.
We also show that for another class of functions - namely the Hamming mixtures' - CL strategies involving a bounded number of product distributions are not beneficial.
- Score: 8.522887729678637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Curriculum learning (CL) - training using samples that are generated and presented in a meaningful order - was introduced in the machine learning context around a decade ago. While CL has been extensively used and analysed empirically, there has been very little mathematical justification for its advantages. We introduce a CL model for learning the class of k-parities on d bits of a binary string with a neural network trained by stochastic gradient descent (SGD). We show that a wise choice of training examples involving two or more product distributions, allows to reduce significantly the computational cost of learning this class of functions, compared to learning under the uniform distribution. Furthermore, we show that for another class of functions - namely the `Hamming mixtures' - CL strategies involving a bounded number of product distributions are not beneficial.
Related papers
- Does the Definition of Difficulty Matter? Scoring Functions and their Role for Curriculum Learning [42.4526628515253]
Curriculum learning (CL) describes a machine learning training strategy in which samples are gradually introduced into the training process based on their difficulty.
We study the robustness and similarity of the most common scoring functions for sample difficulty estimation.
We find that the robustness of scoring functions across random seeds positively correlates with CL performance.
arXiv Detail & Related papers (2024-11-01T18:55:31Z) - Collaborative Learning with Different Labeling Functions [7.228285747845779]
We study a variant of Collaborative PAC Learning, in which we aim to learn an accurate classifier for each of the $n$ data distributions.
We show that, when the data distributions satisfy a weaker realizability assumption, sample-efficient learning is still feasible.
arXiv Detail & Related papers (2024-02-16T04:32:22Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Do Pre-trained Models Benefit Equally in Continual Learning? [25.959813589169176]
Existing work on continual learning (CL) is primarily devoted to developing algorithms for models trained from scratch.
Despite their encouraging performance on contrived benchmarks, these algorithms show dramatic performance drops in real-world scenarios.
This paper advocates the systematic introduction of pre-training to CL.
arXiv Detail & Related papers (2022-10-27T18:03:37Z) - Learnable Distribution Calibration for Few-Shot Class-Incremental
Learning [122.2241120474278]
Few-shot class-incremental learning (FSCIL) faces challenges of memorizing old class distributions and estimating new class distributions given few training samples.
We propose a learnable distribution calibration (LDC) approach, with the aim to systematically solve these two challenges using a unified framework.
arXiv Detail & Related papers (2022-10-01T09:40:26Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Contrastive Learning with Adversarial Examples [79.39156814887133]
Contrastive learning (CL) is a popular technique for self-supervised learning (SSL) of visual representations.
This paper introduces a new family of adversarial examples for constrastive learning and using these examples to define a new adversarial training algorithm for SSL, denoted as CLAE.
arXiv Detail & Related papers (2020-10-22T20:45:10Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
We propose to generate an Over-Complete Distribution (OCD) using Conditional Variational Autoencoder (CVAE) of both seen and unseen classes.
The effectiveness of the framework is evaluated using both Zero-Shot Learning and Generalized Zero-Shot Learning protocols.
arXiv Detail & Related papers (2020-04-01T19:05:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.