Do Pre-trained Models Benefit Equally in Continual Learning?
- URL: http://arxiv.org/abs/2210.15701v2
- Date: Thu, 4 Jul 2024 20:25:36 GMT
- Title: Do Pre-trained Models Benefit Equally in Continual Learning?
- Authors: Kuan-Ying Lee, Yuanyi Zhong, Yu-Xiong Wang,
- Abstract summary: Existing work on continual learning (CL) is primarily devoted to developing algorithms for models trained from scratch.
Despite their encouraging performance on contrived benchmarks, these algorithms show dramatic performance drops in real-world scenarios.
This paper advocates the systematic introduction of pre-training to CL.
- Score: 25.959813589169176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing work on continual learning (CL) is primarily devoted to developing algorithms for models trained from scratch. Despite their encouraging performance on contrived benchmarks, these algorithms show dramatic performance drops in real-world scenarios. Therefore, this paper advocates the systematic introduction of pre-training to CL, which is a general recipe for transferring knowledge to downstream tasks but is substantially missing in the CL community. Our investigation reveals the multifaceted complexity of exploiting pre-trained models for CL, along three different axes, pre-trained models, CL algorithms, and CL scenarios. Perhaps most intriguingly, improvements in CL algorithms from pre-training are very inconsistent an underperforming algorithm could become competitive and even state-of-the-art when all algorithms start from a pre-trained model. This indicates that the current paradigm, where all CL methods are compared in from-scratch training, is not well reflective of the true CL objective and desired progress. In addition, we make several other important observations, including that CL algorithms that exert less regularization benefit more from a pre-trained model; and that a stronger pre-trained model such as CLIP does not guarantee a better improvement. Based on these findings, we introduce a simple yet effective baseline that employs minimum regularization and leverages the more beneficial pre-trained model, coupled with a two-stage training pipeline. We recommend including this strong baseline in the future development of CL algorithms, due to its demonstrated state-of-the-art performance.
Related papers
- ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
Continual learning (CL) aims to train a model that can solve multiple tasks presented sequentially.
Recent CL approaches have achieved strong performance by leveraging large pre-trained models that generalize well to downstream tasks.
However, such methods lack theoretical guarantees, making them prone to unexpected failures.
We bridge this gap by integrating an empirically strong approach into a principled framework, designed to prevent forgetting.
arXiv Detail & Related papers (2024-10-01T12:58:37Z) - Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations [19.800907485589402]
Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse downstream tasks.
These tuned models tend to become highly specialized, limiting their practicality for real-world deployment.
We propose a lightweight representation calibration method for fine-tuning CLIP.
arXiv Detail & Related papers (2024-03-12T01:47:17Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Real-Time Evaluation in Online Continual Learning: A New Hope [104.53052316526546]
We evaluate current Continual Learning (CL) methods with respect to their computational costs.
A simple baseline outperforms state-of-the-art CL methods under this evaluation.
This surprisingly suggests that the majority of existing CL literature is tailored to a specific class of streams that is not practical.
arXiv Detail & Related papers (2023-02-02T12:21:10Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Foundational Models for Continual Learning: An Empirical Study of Latent
Replay [17.322679682451597]
We study the efficacy of pre-trained vision models as a foundation for downstream continual learning scenarios.
We compare efficacy of various pre-trained models in large-scale benchmarking scenarios with a vanilla replay setting applied in the latent and in the raw-data space.
arXiv Detail & Related papers (2022-04-30T19:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.