論文の概要: TAP: Accelerating Large-Scale DNN Training Through Tensor Automatic
Parallelisation
- arxiv url: http://arxiv.org/abs/2302.00247v1
- Date: Wed, 1 Feb 2023 05:22:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-02-02 13:24:04.797206
- Title: TAP: Accelerating Large-Scale DNN Training Through Tensor Automatic
Parallelisation
- Title(参考訳): TAP: テンソル自動並列化による大規模DNNトレーニングの高速化
- Authors: Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Xianyan Jia, Yong Li, Chencan
Wu, Jialin Li, Wei Lin
- Abstract要約: 本稿では,最適なデータとテンソル並列スケジュールを自動的に検索するモデル並列化フレームワークTAPを提案する。
実験によると、TAPは最先端の自動並列処理フレームワークよりも20ドルから160ドル高速である。
- 参考スコア(独自算出の注目度): 19.009600866053923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model parallelism has become necessary to train large neural networks.
However, finding a suitable model parallel schedule for an arbitrary neural
network is a non-trivial task due to the exploding search space. In this work,
we present a model parallelism framework TAP that automatically searches for
the best data and tensor parallel schedules. Leveraging the key insight that a
neural network can be represented as a directed acyclic graph, within which may
only exist a limited set of frequent subgraphs, we design a graph pruning
algorithm to fold the search space efficiently. TAP runs at sub-linear
complexity concerning the neural network size. Experiments show that TAP is
$20\times- 160\times$ faster than the state-of-the-art automatic parallelism
framework, and the performance of its discovered schedules is competitive with
the expert-engineered ones.
- Abstract(参考訳): 大規模ニューラルネットワークのトレーニングにはモデル並列化が必要である。
しかしながら、任意のニューラルネットワークに対して適切なモデル並列スケジュールを見つけることは、探索空間の爆発による非自明な作業である。
本研究では,最適なデータとテンソル並列スケジュールを自動的に検索するモデル並列化フレームワークTAPを提案する。
ニューラルネットワークを有向非巡回グラフとして表現できるという重要な洞察を利用して,探索空間を効率的に折り畳むためのグラフプルーニングアルゴリズムを設計した。
TAPは、ニューラルネットワークサイズに関するサブ線形複雑度で実行される。
実験によると、tapは最先端の自動並列処理フレームワークよりも20\times-160\times$高速であり、検出されたスケジュールのパフォーマンスはエキスパートエンジニアリングのものと競合する。
関連論文リスト
- Automatic Operator-level Parallelism Planning for Distributed Deep Learning -- A Mixed-Integer Programming Approach [6.449961842220686]
本稿では,最適性と計算効率のバランスをとる二段階のソリューションフレームワークを提案する。
我々のフレームワークは、同等または優れた性能を実現し、同じメモリ制約下で計算バブルを半分に減らします。
このような能力は、最適な並列化戦略を探求するための貴重な研究ツールであり、大規模なAIデプロイメントのための実践的な産業ソリューションである。
論文 参考訳(メタデータ) (2025-03-12T13:00:29Z) - Prediction-Assisted Online Distributed Deep Learning Workload Scheduling in GPU Clusters [24.845122459974466]
本稿では,A-SRPT(Adaptive Shortest-Remaining-Time-first)スケジューリングアルゴリズムを提案する。
ヘテロジニアスディープニューラルネットワーク(DNN)モデルに対応するグラフとして各ジョブをモデル化することにより、A-SRPTはジョブを利用可能なGPUに戦略的に割り当てる。
A-SRPTは複雑なスケジューリング問題を単一マシンのインスタンスにマッピングし、プリエンプティブな "shortest-remaining-processing-time-first" 戦略によって最適に対処する。
論文 参考訳(メタデータ) (2025-01-09T20:19:01Z) - Universal Checkpointing: A Flexible and Efficient Distributed Checkpointing System for Large-Scale DNN Training with Reconfigurable Parallelis [16.04816181826873]
Universal Checkpointing (UCP)は、ディープニューラルネットワーク(DNN)トレーニングのための新しいチェックポイントシステムである。
UCPは、チェックポイント構造を並列トレーニング戦略とハードウェア構成から分離することで、既存のシステムの課題を克服する。
本稿では,様々な並列化戦略に対するチェックポイント状態の自動マッピングを可能にするパターンベースの再構成パイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-27T01:28:30Z) - OTOv3: Automatic Architecture-Agnostic Neural Network Training and
Compression from Structured Pruning to Erasing Operators [57.145175475579315]
このトピックは、構造化プルーニングからニューラルアーキテクチャサーチまで、さまざまなテクニックにまたがっている。
第3世代のOTOv3(Noth-Train-Once)を導入する。
我々は,構造化プルーニングとニューラルアーキテクチャ探索におけるOTOv3の有効性を実証した。
論文 参考訳(メタデータ) (2023-12-15T00:22:55Z) - Testing RadiX-Nets: Advances in Viable Sparse Topologies [0.9555447998395205]
ハイパーパラメタライズドディープニューラルネットワーク(DNN)のスパシフィケーションは、複雑なデータのより単純な表現を生成する。
DNNのサブグループであるRadiX-Netsは、ニューラルネットワークの欠如に対処するランタイムを維持している。
本稿では,スケーラブルモデルにおけるRadiX-Netsのテストスイートを提案する。
論文 参考訳(メタデータ) (2023-11-06T23:27:28Z) - Entropic Score metric: Decoupling Topology and Size in Training-free NAS [18.804303642485895]
本稿では,そのアクティベーションの集約的要素ワイドエントロピーを通じてモデル表現率を推定するために,Entropic Score という新しいトレーニング自由度指標を提案する。
LogSynflowと適切な組み合わせにより、モデルサイズを探索し、1GPU時間未満でエッジアプリケーション用の高性能ハイブリッドトランスフォーマーを完全に設計する能力が向上する。
論文 参考訳(メタデータ) (2023-10-06T11:49:21Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
ディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
安価な"プリエンプティブル"インスタンスを使用するか、あるいは複数のリージョンから既存のリソースをプールする。
論文 参考訳(メタデータ) (2023-01-27T18:55:19Z) - HARL: Hierarchical Adaptive Reinforcement Learning Based Auto Scheduler
for Neural Networks [51.71682428015139]
効率的なテンソルプログラム探索のための強化学習に基づく自動スケジューリングシステムであるHARLを提案する。
HarLは、最先端のオートスケジューラと比較して、テンソル演算子の性能を22%改善し、探索速度を4.3倍改善する。
また、エンドツーエンドのニューラルネットワークでは、推論性能と探索速度も大幅に向上する。
論文 参考訳(メタデータ) (2022-11-21T04:15:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
大規模モデル並列ディープラーニング(DL)における新しい重要なコミュニケーションパターンについて検討する。
クロスメッシュリシャーディングでは、シャードテンソルをソースデバイスメッシュから宛先デバイスメッシュに送信する必要がある。
本稿では、効率的な放送ベースの通信システムと「重複しやすい」パイプラインスケジュールという、クロスメシュ・リシャーディングに対処するための2つのコントリビューションを提案する。
論文 参考訳(メタデータ) (2022-11-10T03:56:48Z) - DistIR: An Intermediate Representation and Simulator for Efficient
Neural Network Distribution [15.086401550425125]
DistIRは分散計算のための表現であり、効率的な解析のために調整されている。
本研究では、DistIRとそのシミュレータが1000以上の構成にまたがる複雑な分散空間を高速にグリッドで探索する方法を示す。
論文 参考訳(メタデータ) (2021-11-09T21:32:51Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Parareal Neural Networks Emulating a Parallel-in-time Algorithm [1.988145627448243]
ディープニューラルネットワーク(DNN)が深まるにつれて、トレーニング時間が増加する。
本稿では,並列ニューラルネットワークを構築するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T02:03:39Z) - Parallel Training of Deep Networks with Local Updates [84.30918922367442]
ローカル並列性(Local Parallelism)は、グローバルバックプロパゲーションを切り捨てられたレイヤワイズバックプロパゲーションに置き換えることで、ディープネットワーク内の個々のレイヤのトレーニングを並列化するフレームワークである。
我々は、様々なアーキテクチャセットにわたるビジョンと言語領域の両方で結果を示し、局所的並列性は特に高コンピュートなシステムにおいて有効であることを見出した。
論文 参考訳(メタデータ) (2020-12-07T16:38:45Z) - Auto-MAP: A DQN Framework for Exploring Distributed Execution Plans for
DNN Workloads [11.646744408920764]
Auto-MAPはワークロードの分散実行計画を探索するフレームワークである。
ディープラーニングモデルのIRレベルの強化学習を通じて、高速な並列化戦略を自動的に発見することができる。
評価の結果,Auto-MAPは複数のNLPおよび畳み込みモデルにおいて,より優れたスループットを実現しつつ,最適解を2時間以内に見つけることができることがわかった。
論文 参考訳(メタデータ) (2020-07-08T12:38:03Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorchは、完全に自動化されたディープラーニング(AutoDL)を実現するフレームワーク
ディープニューラルネットワーク(DNN)のウォームスタートとアンサンブルのためのマルチフィデリティ最適化とポートフォリオ構築を組み合わせる。
Auto-PyTorchは、いくつかの最先端の競合製品よりもパフォーマンスが良いことを示す。
論文 参考訳(メタデータ) (2020-06-24T15:15:17Z) - A Linear Algebraic Approach to Model Parallelism in Deep Learning [0.0]
ネットワークのサイズと複雑さが大きくなるにつれて、大規模クラスタコンピューティング環境でのディープニューラルネットワーク(DNN)のトレーニングがますます必要になる。
深層学習における並列性をモデル化するための線形代数的手法を提案し,DNNにおけるテンソルの並列分布を実現する。
本研究では,これらの並列プリミティブを用いて分散DNN層を構築し,PyTorchおよびMPIベースの分散ディープラーニングツールキットであるDistDLを用いて分散DNNを構築し,訓練することにより,それらのアプリケーションを実演する。
論文 参考訳(メタデータ) (2020-06-04T19:38:05Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。