Hardness of braided quantum circuit optimization in the surface code
- URL: http://arxiv.org/abs/2302.00273v1
- Date: Wed, 1 Feb 2023 06:35:50 GMT
- Title: Hardness of braided quantum circuit optimization in the surface code
- Authors: Kunihiro Wasa, Shin Nishio, Koki Suetsugu, Michael Hanks, Ashley
Stephens, Yu Yokoi, and Kae Nemoto
- Abstract summary: Large-scale quantum information processing requires the use of quantum error codes to mitigate the effects of noise in quantum devices.
Topological error-correcting codes, such as surface codes, are promising candidates as they can be implemented using only local interactions in a two-dimensional array of physical qubits.
However, error correction also introduces a significant overhead in time, the number of physical qubits, and the number of physical gates.
- Score: 0.1759008116536278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale quantum information processing requires the use of quantum error
correcting codes to mitigate the effects of noise in quantum devices.
Topological error-correcting codes, such as surface codes, are promising
candidates as they can be implemented using only local interactions in a
two-dimensional array of physical qubits. Procedures such as defect braiding
and lattice surgery can then be used to realize a fault-tolerant universal set
of gates on the logical space of such topological codes. However, error
correction also introduces a significant overhead in computation time, the
number of physical qubits, and the number of physical gates. While optimizing
fault-tolerant circuits to minimize this overhead is critical, the
computational complexity of such optimization problems remains unknown. This
ambiguity leaves room for doubt surrounding the most effective methods for
compiling fault-tolerant circuits for a large-scale quantum computer. In this
paper, we show that the optimization of a special subset of braided quantum
circuits is NP-hard by a polynomial-time reduction of the optimization problem
into a specific problem called Planar Rectilinear 3SAT.
Related papers
- A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Towards early fault tolerance on a 2$\times$N array of qubits equipped with shuttling [0.0]
Two-dimensional grid of locally-interacting qubits is promising platform for fault tolerant quantum computing.
In this paper, we show that such constrained architectures can also support fault tolerance.
We demonstrate that error correction is possible and identify the classes of codes that are naturally suited to this platform.
arXiv Detail & Related papers (2024-02-19T23:31:55Z) - Dependency-Aware Compilation for Surface Code Quantum Architectures [7.543907169342984]
We study the problem of compiling quantum circuits for quantum computers implementing surface codes.
We solve this problem efficiently and near-optimally with a novel algorithm.
Our evaluation shows that our approach is powerful and flexible for compiling realistic workloads.
arXiv Detail & Related papers (2023-11-29T19:36:19Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.