Optimizing quantum gates towards the scale of logical qubits
- URL: http://arxiv.org/abs/2308.02321v3
- Date: Tue, 9 Jan 2024 20:29:31 GMT
- Title: Optimizing quantum gates towards the scale of logical qubits
- Authors: Paul V. Klimov, Andreas Bengtsson, Chris Quintana, Alexandre Bourassa,
Sabrina Hong, Andrew Dunsworth, Kevin J. Satzinger, William P. Livingston,
Volodymyr Sivak, Murphy Y. Niu, Trond I. Andersen, Yaxing Zhang, Desmond
Chik, Zijun Chen, Charles Neill, Catherine Erickson, Alejandro Grajales Dau,
Anthony Megrant, Pedram Roushan, Alexander N. Korotkov, Julian Kelly, Vadim
Smelyanskiy, Yu Chen, Hartmut Neven
- Abstract summary: A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
- Score: 78.55133994211627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A foundational assumption of quantum error correction theory is that quantum
gates can be scaled to large processors without exceeding the error-threshold
for fault tolerance. Two major challenges that could become fundamental
roadblocks are manufacturing high performance quantum hardware and engineering
a control system that can reach its performance limits. The control challenge
of scaling quantum gates from small to large processors without degrading
performance often maps to non-convex, high-constraint, and time-dependent
control optimization over an exponentially expanding configuration space. Here
we report on a control optimization strategy that can scalably overcome the
complexity of such problems. We demonstrate it by choreographing the frequency
trajectories of 68 frequency-tunable superconducting qubits to execute single-
and two-qubit gates while mitigating computational errors. When combined with a
comprehensive model of physical errors across our processor, the strategy
suppresses physical error rates by $\sim3.7\times$ compared with the case of no
optimization. Furthermore, it is projected to achieve a similar performance
advantage on a distance-23 surface code logical qubit with 1057 physical
qubits. Our control optimization strategy solves a generic scaling challenge in
a way that can be adapted to a variety of quantum operations, algorithms, and
computing architectures.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Hardness of braided quantum circuit optimization in the surface code [0.1759008116536278]
Large-scale quantum information processing requires the use of quantum error codes to mitigate the effects of noise in quantum devices.
Topological error-correcting codes, such as surface codes, are promising candidates as they can be implemented using only local interactions in a two-dimensional array of physical qubits.
However, error correction also introduces a significant overhead in time, the number of physical qubits, and the number of physical gates.
arXiv Detail & Related papers (2023-02-01T06:35:50Z) - Scalable algorithm simplification using quantum AND logic [18.750481652943005]
We implement a quantum version of AND logic that can reduce the cost, enabling the execution of key quantum circuits.
On a high-scalability superconducting quantum processor, we demonstrate low-depth synthesis of high-fidelity generalized Toffoli gates with up to 8 qubits and Grover's search algorithm in a search space of up to 64 entries.
arXiv Detail & Related papers (2021-12-30T04:25:39Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Special-Purpose Quantum Processor Design [2.275405513780208]
Full connectivity of qubits is necessary for most quantum algorithms.
inserting swap gate to enable the two-qubit gates between uncoupled qubits significantly decreases the computation result fidelity.
We propose a Special-Purpose Quantum Processor Design method that can design suitable structures for different quantum algorithms.
arXiv Detail & Related papers (2021-02-01T23:26:15Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits [4.354697470999286]
We propose a simplified implementation of universal holonomic quantum gates on superconducting circuits.
Our scheme is more robust than the conventional ones, and thus provides a promising alternative strategy for scalable fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-04-23T13:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.