Observation of Acoustically Induced Dressed States of Rare-Earth Ions
- URL: http://arxiv.org/abs/2302.00327v2
- Date: Wed, 24 Jan 2024 08:59:29 GMT
- Title: Observation of Acoustically Induced Dressed States of Rare-Earth Ions
- Authors: Ryuichi Ohta, Gregoire Lelu, Xuejun Xu, Tomohiro Inaba, Kenichi
Hitachi, Yoshitaka Taniyasu, Haruki Sanada, Atsushi Ishizawa, Takehiko
Tawara, Katsuya Oguri, Hiroshi Yamaguchi, and Hajime Okamoto
- Abstract summary: Development allows for on-chip control of long-lived ions.
paves the way to highly coherent hybrid quantum systems with telecom photons, acoustic phonons, and electrons.
- Score: 0.2656235427539931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acoustically induced dressed states of long-lived erbium ions in a crystal
are demonstrated. These states are formed by rapid modulation of two-level
systems via strain induced by surface acoustic waves whose frequencies exceed
the optical linewidth of the ion ensemble. Multiple sidebands and the reduction
of their intensities appearing near the surface are evidence of a strong
interaction between the acoustic waves and the ions. This development allows
for on-chip control of long-lived ions and paves the way to highly coherent
hybrid quantum systems with telecom photons, acoustic phonons, and electrons.
Related papers
- Spectral signatures of vibronic coupling in trapped cold atomic Rydberg
systems [0.5492495595636527]
Atoms and ions confined with electric and optical fields form the basis of many current quantum simulation and computing platforms.
We discuss the case of two trapped Rydberg ions, for which the interaction between the relative vibrations and Rydberg states realizes a quantum Rabi model.
arXiv Detail & Related papers (2023-11-28T17:50:00Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Coherently amplified ultrafast imaging using a free-electron interferometer [0.5245057441560558]
Free-Electron Ramsey Imaging (IFER) is a microscopy approach based on light-induced electron modulation.
We provide time-, space-, and phase-resolved measurements of a micro-drum made from a hexagonal boron nitride membrane.
Our experiments show a 20-fold coherent amplification of the near-field signal compared to conventional electron near-field imaging.
arXiv Detail & Related papers (2023-05-08T17:20:30Z) - Microwave amplification via interfering multi-photon processes in a
half-waveguide quantum electrodynamics system [2.884845555225785]
We investigate the amplification of a microwave probe signal by a superconducting artificial atom.
Due to the weak anharmonicity of the artificial atom, a strong pump field creates excitations among the dressed states.
We obtain a maximum amplitude of about 18 %, higher than in any previous experiment with a single artificial atom.
arXiv Detail & Related papers (2023-02-15T03:24:17Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Indirect exciton-phonon dynamics in MoS2 revealed by ultrafast electron
diffraction [5.782172606425799]
Transition metal dichalcogenides layered nano-crystals are emerging as promising candidates for next-generation optoelectronic and quantum devices.
Here, we use ultrafast electron diffraction and ab initio calculations to investigate the many-body structural dynamics following nearly-resonant excitation of low-energy indirect excitons in MoS2.
Our results highlight the strong selectivity of phononic excitations directly associated with the specific indirect-exciton nature of the wavelength-dependent electronic transitions triggered in the system.
arXiv Detail & Related papers (2021-12-30T23:23:08Z) - Nearly-Resonant Crystalline-Phononic Coupling in Quantum Spin Liquid
Candidate CsYbSe$_2$ [48.30279211143264]
CsYbSe$$, a recently identified quantum spin liquid (QSL) candidate, exhibits strong crystal electric field excitations.
We identify phonon and CEF modes with Raman spectroscopy and observe strong CEF-phonon mixing resulting in a vibronic bound state.
arXiv Detail & Related papers (2021-11-06T17:00:34Z) - Exploring the many-body dynamics near a conical intersection with
trapped Rydberg ions [6.431584269935996]
Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes.
We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections.
We study how the presence of a conical intersection affects both the nuclear and electronic dynamics.
arXiv Detail & Related papers (2020-12-03T11:08:59Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.