Probing excited-state dynamics of transmon ionization
- URL: http://arxiv.org/abs/2505.00639v1
- Date: Thu, 01 May 2025 16:28:03 GMT
- Title: Probing excited-state dynamics of transmon ionization
- Authors: Zihao Wang, Benjamin D'Anjou, Philippe Gigon, Alexandre Blais, Machiel S. Blok,
- Abstract summary: We study the excited-state dynamics induced by strong drives during readout in circuit QED.<n>With up to 10 resolvable states, we quantify the critical photon number of ionization, the resulting state after ionization, and the fraction of the population transferred to highly excited states.
- Score: 47.00361052400629
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The fidelity and quantum nondemolition character of the dispersive readout in circuit QED are limited by unwanted transitions to highly excited states at specific photon numbers in the readout resonator. This observation can be explained by multiphoton resonances between computational states and highly excited states in strongly driven nonlinear systems, analogous to multiphoton ionization in atoms and molecules. In this work, we utilize the multilevel nature of high-$E_J/E_C$ transmons to probe the excited-state dynamics induced by strong drives during readout. With up to 10 resolvable states, we quantify the critical photon number of ionization, the resulting state after ionization, and the fraction of the population transferred to highly excited states. Moreover, using pulse-shaping to control the photon number in the readout resonator in the high-power regime, we tune the adiabaticity of the transition and verify that transmon ionization is a Landau-Zener-type transition. Our experimental results agree well with the theoretical prediction from a semiclassical driven transmon model and may guide future exploration of strongly driven nonlinear oscillators.
Related papers
- Offset Charge Dependence of Measurement-Induced Transitions in Transmons [32.73124984242397]
A major limitation in improving qubit readout is measurement-induced transitions.<n>We experimentally confirm a prediction by characterizing measurement-induced transitions with increasing resonator photon population.<n>Because highly excited states are involved, achieving quantitative agreement between theory and experiment requires accounting for higher-order harmonics.
arXiv Detail & Related papers (2025-05-01T17:28:57Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - The Multimode Character of Quantum States Released from a
Superconducting Cavity [0.0]
We study the release of complex quantum states from a superconducting resonator.
We quantify the multi-mode character of the output state and discuss how to optimize the fidelity of a quantum state transfer process.
arXiv Detail & Related papers (2023-06-21T09:16:39Z) - Characterising Polariton States in Non-Dispersive Regime of Circuit
Quantum Electrodynamics [0.0]
We fabricated and measured a superconducting transmon-resonator system in the non-dispersive regime.
We report experimental studies of transitions between polariton states at varying driving powers and frequencies.
arXiv Detail & Related papers (2023-02-09T09:31:12Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Unconditional accumulation of nonclassicality in a single-atom
mechanical oscillator [0.0]
We report on the robust experimental accumulation of nonclassicallity of motion of a single trapped ion.
The nonclassicality stems from deterministic incoherent modulation of thermal phonon number distribution.
We show that the repetitive application of this nonlinear process monotonically accumulates the observable state nonclassicality.
arXiv Detail & Related papers (2020-04-27T15:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.