論文の概要: Distillation Policy Optimization
- arxiv url: http://arxiv.org/abs/2302.00533v5
- Date: Wed, 27 Sep 2023 05:06:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 19:49:00.799627
- Title: Distillation Policy Optimization
- Title(参考訳): 蒸留政策最適化
- Authors: Jianfei Ma
- Abstract要約: 本研究では,評価と制御の両面において2つのデータソースを調和させるアクタ批判学習フレームワークを提案する。
このフレームワークには、統一利便推定器(UAE)と残留基線を含む分散還元機構が組み込まれている。
以上の結果から,オンラインアルゴリズムのサンプル効率は大幅に向上し,非政治的アプローチとのギャップを効果的に埋めることができた。
- 参考スコア(独自算出の注目度): 5.439020425819001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While on-policy algorithms are known for their stability, they often demand a
substantial number of samples. In contrast, off-policy algorithms, which
leverage past experiences, are considered sample-efficient but tend to exhibit
instability. Can we develop an algorithm that harnesses the benefits of
off-policy data while maintaining stable learning? In this paper, we introduce
an actor-critic learning framework that harmonizes two data sources for both
evaluation and control, facilitating rapid learning and adaptable integration
with on-policy algorithms. This framework incorporates variance reduction
mechanisms, including a unified advantage estimator (UAE) and a residual
baseline, improving the efficacy of both on- and off-policy learning. Our
empirical results showcase substantial enhancements in sample efficiency for
on-policy algorithms, effectively bridging the gap to the off-policy
approaches. It demonstrates the promise of our approach as a novel learning
paradigm.
- Abstract(参考訳): オンポリシーアルゴリズムはその安定性で知られているが、かなりの数のサンプルを必要とすることが多い。
対照的に、過去の経験を生かしたオフポリシーアルゴリズムはサンプル効率が高いが不安定である傾向がある。
安定した学習を維持しつつ、非政治データの利点を生かしたアルゴリズムを開発できるだろうか?
本稿では,評価と制御の両方のために2つのデータソースを調和させ,迅速な学習とオンポリシーアルゴリズムとの適応可能な統合を促進するアクタ-クリティック学習フレームワークを提案する。
このフレームワークには、統一的優位推定器(UAE)と残留ベースラインを含む分散低減機構が組み込まれ、オン・アンド・オフ・政治学習の有効性が向上する。
我々の実験結果は,オンポリシーアルゴリズムのサンプル効率の大幅な向上を示し,オフポリシーアプローチとのギャップを効果的に橋渡しした。
これは、新しい学習パラダイムとしての私たちのアプローチの約束を示しています。
関連論文リスト
- Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
本稿では、オフラインシーケンスモデリングとオフライン強化学習をダブルポリシー推定と組み合わせたRLアルゴリズムDPEを提案する。
D4RLベンチマークを用いて,OpenAI Gymの複数のタスクで本手法を検証した。
論文 参考訳(メタデータ) (2023-08-28T20:46:07Z) - Generalized Policy Improvement Algorithms with Theoretically Supported Sample Reuse [15.134707391442236]
我々は,データ駆動型学習ベース制御のためのモデルフリー深層強化学習アルゴリズムを新たに開発した。
当社の一般政策改善アルゴリズムは,オンライン手法の政策改善保証とサンプル再利用の効率化を両立させる。
論文 参考訳(メタデータ) (2022-06-28T02:56:12Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
Adversarial Imitation for Sample Efficiency [61.03922379081648]
本稿では,敵対的トレーニングやmin-max最適化を必要としない非政治的サンプル効率の手法を提案する。
実験の結果, D2-Imitation はサンプル効率の向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T19:36:19Z) - Generalized Proximal Policy Optimization with Sample Reuse [8.325359814939517]
我々は、オン・ポリシー・アルゴリズムの理論的に支持された安定性の利点とオフ・ポリシー・アルゴリズムのサンプル効率を組み合わせる。
我々は、政策改善の保証を開発し、その境界を政策最適化に使用するクリッピング機構に接続する。
これは、我々がGeneralized Proximal Policy Optimization with Sample Reuseと呼ぶ、一般的なアルゴリズムの非政治バージョンを動機付けます。
論文 参考訳(メタデータ) (2021-10-29T20:22:31Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
オフライン強化学習は、探索を必要とせずに、事前に収集された静的データセットから効果的なポリシーを学ぶことを約束する。
既存のQラーニングとアクター批判に基づくオフポリティクスRLアルゴリズムは、アウト・オブ・ディストリビューション(OOD)アクションや状態からのブートストラップ時に失敗する。
我々は,OOD状態-動作ペアを検出し,トレーニング目標への貢献度を下げるアルゴリズムであるUncertainty Weighted Actor-Critic (UWAC)を提案する。
論文 参考訳(メタデータ) (2021-05-17T20:16:46Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
政治政策の最適化は強化学習において難しい問題である。
オフポリシーアルゴリズムはメモリ効率が高く、オフポリシーサンプルから学ぶことができる。
論文 参考訳(メタデータ) (2020-09-14T16:22:46Z) - META-Learning Eligibility Traces for More Sample Efficient Temporal
Difference Learning [2.0559497209595823]
そこで本稿では,状態依存的な方法で,可視性トレースパラメータを調整するためのメタラーニング手法を提案する。
この適応は、更新対象の分布情報をオンラインで学習する補助学習者の助けを借りて達成される。
提案手法は,いくつかの前提条件下では,全体の目標誤差を最小限に抑えて,更新対象の全体的な品質を改善する。
論文 参考訳(メタデータ) (2020-06-16T03:41:07Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
強化学習(RL)アルゴリズムは、最近の顕著な成功にもかかわらず、高いサンプリング複雑性に悩まされている。
オフポリシーアルゴリズムの一般的なサンプル効率に基づいて構築する。
提案手法は,現状の政策勾配法よりもサンプル効率がよいことを示す。
論文 参考訳(メタデータ) (2020-01-08T10:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。