論文の概要: Graph Neural Network Based Surrogate Model of Physics Simulations for
Geometry Design
- arxiv url: http://arxiv.org/abs/2302.00557v1
- Date: Wed, 1 Feb 2023 16:23:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-02 17:07:04.801983
- Title: Graph Neural Network Based Surrogate Model of Physics Simulations for
Geometry Design
- Title(参考訳): グラフニューラルネットワークを用いた幾何設計のための物理シミュレーションのサロゲートモデル
- Authors: Jian Cheng Wong, Chin Chun Ooi, Joyjit Chattoraj, Lucas Lestandi,
Guoying Dong, Umesh Kizhakkinan, David William Rosen, Mark Hyunpong Jhon, My
Ha Dao
- Abstract要約: 物理シミュレーションのための高速サロゲートモデルとしてグラフニューラルネットワーク(GNN)を開発した。
ノードレベルとグラフレベルの両方で柔軟に予測できるエンコーダ・プロセッサ・デコーダ型アーキテクチャを利用する。
提案したGNNベースサロゲートモデルの性能を2つの例に示す。
- 参考スコア(独自算出の注目度): 0.20315704654772412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational Intelligence (CI) techniques have shown great potential as a
surrogate model of expensive physics simulation, with demonstrated ability to
make fast predictions, albeit at the expense of accuracy in some cases. For
many scientific and engineering problems involving geometrical design, it is
desirable for the surrogate models to precisely describe the change in geometry
and predict the consequences. In that context, we develop graph neural networks
(GNNs) as fast surrogate models for physics simulation, which allow us to
directly train the models on 2/3D geometry designs that are represented by an
unstructured mesh or point cloud, without the need for any explicit or
hand-crafted parameterization. We utilize an encoder-processor-decoder-type
architecture which can flexibly make prediction at both node level and graph
level. The performance of our proposed GNN-based surrogate model is
demonstrated on 2 example applications: feature designs in the domain of
additive engineering and airfoil design in the domain of aerodynamics. The
models show good accuracy in their predictions on a separate set of test
geometries after training, with almost instant prediction speeds, as compared
to O(hour) for the high-fidelity simulations required otherwise.
- Abstract(参考訳): 計算知能(ci)技術は高価な物理学シミュレーションの代理モデルとして大きな可能性を示しており、場合によっては精度を犠牲にして、高速な予測ができることを示した。
幾何学的設計を含む多くの科学的・工学的な問題に対して、サロゲートモデルは幾何の変化を正確に記述し、その結果を予測することが望ましい。
このような状況下では,グラフニューラルネットワーク(GNN)を物理シミュレーションの高速サロゲートモデルとして開発し,非構造化メッシュやポイントクラウドで表される2/3次元形状設計のモデルを,明示的あるいは手作りのパラメータ化を必要とせずに直接訓練することができる。
ノードレベルとグラフレベルの両方で柔軟に予測できるエンコーダ・プロセッサ・デコーダ型アーキテクチャを利用する。
提案するgnnベースのサロゲートモデルの性能は,加法工学領域の特徴設計と空力分野の翼設計という2つの応用例で実証された。
これらのモデルは、トレーニング後のテストジオメトリの別セットでの予測において、必要な高い忠実度シミュレーションのo(hour)と比較して、ほぼ瞬時に予測速度を示す。
関連論文リスト
- Generative Aerodynamic Design with Diffusion Probabilistic Models [0.7373617024876725]
生成モデルは、シミュレーションの大規模なデータセット上でジオメトリを一般化することにより、ジオメトリを提供する可能性を秘めている。
特に,XFOILシミュレーションで訓練した拡散確率モデルを用いて,所定の空力特性と制約を条件とした2次元翼ジオメトリーを合成する。
モデルが同一の要件と制約に対して多様な候補設計を生成可能であることを示し、最適化手順に複数の出発点を提供する設計空間を効果的に探索する。
論文 参考訳(メタデータ) (2024-09-20T08:38:36Z) - Physics-Informed Geometric Operators to Support Surrogate, Dimension Reduction and Generative Models for Engineering Design [38.00713966087315]
本研究では,代用/分別モデルのトレーニングに供される幾何データを強化するための物理インフォームド幾何演算子(GO)のセットを提案する。
GOは形状の微分的および積分的性質を利用して、高レベルの固有幾何学的情報と物理を訓練に使用する特徴ベクトルに注入する。
論文 参考訳(メタデータ) (2024-07-10T12:50:43Z) - Bayesian Mesh Optimization for Graph Neural Networks to Enhance Engineering Performance Prediction [1.6574413179773761]
工学設計において、サロゲートモデルは計算コストのかかるシミュレーションを置き換えるために広く使われている。
本稿では3次元ディープラーニングに基づく代理モデルのためのベイズグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々のフレームワークはベイズ最適化によってメッシュ要素の最適サイズを決定し、その結果、高精度なサロゲートモデルが得られる。
論文 参考訳(メタデータ) (2024-06-04T06:27:48Z) - Multi-GPU Approach for Training of Graph ML Models on large CFD Meshes [0.0]
メッシュベースの数値解法は多くのデザインツールチェーンにおいて重要な部分である。
機械学習に基づく代理モデルは近似解を予測するのに速いが、精度に欠けることが多い。
本稿では、グラフベース機械学習の領域から産業関連メッシュサイズまで、最先端のサロゲートモデルをスケールする。
論文 参考訳(メタデータ) (2023-07-25T15:49:25Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - A physics and data co-driven surrogate modeling approach for temperature
field prediction on irregular geometric domain [12.264200001067797]
本研究では, 温度場予測のための新しい物理・データ共駆動サロゲートモデリング法を提案する。
数値計算により,本手法はより小さなデータセット上での精度予測を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-03-15T08:43:24Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。