論文の概要: Physics Informed Piecewise Linear Neural Networks for Process
Optimization
- arxiv url: http://arxiv.org/abs/2302.00990v1
- Date: Thu, 2 Feb 2023 10:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-03 14:29:18.119015
- Title: Physics Informed Piecewise Linear Neural Networks for Process
Optimization
- Title(参考訳): プロセス最適化のための物理インフォームドピスワイズ線形ニューラルネットワーク
- Authors: Ece S. Koksal and Erdal Aydin
- Abstract要約: ニューラルネットワークモデルに埋め込まれた最適化問題に対して,物理情報を用いた線形ニューラルネットワークモデルの更新が提案されている。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constructing first-principles models is usually a challenging and
time-consuming task due to the complexity of the real-life processes. On the
other hand, data-driven modeling, and in particular neural network models often
suffer from issues such as overfitting and lack of useful and highquality data.
At the same time, embedding trained machine learning models directly into the
optimization problems has become an effective and state-of-the-art approach for
surrogate optimization, whose performance can be improved by physics-informed
training. In this study, it is proposed to upgrade piece-wise linear neural
network models with physics informed knowledge for optimization problems with
neural network models embedded. In addition to using widely accepted and
naturally piece-wise linear rectified linear unit (ReLU) activation functions,
this study also suggests piece-wise linear approximations for the hyperbolic
tangent activation function to widen the domain. Optimization of three case
studies, a blending process, an industrial distillation column and a crude oil
column are investigated. For all cases, physics-informed trained neural network
based optimal results are closer to global optimality. Finally, associated CPU
times for the optimization problems are much shorter than the standard
optimization results.
- Abstract(参考訳): 第一原理モデルの構築は通常、実際のプロセスの複雑さのために困難で時間を要する作業である。
一方、データ駆動モデリング、特にニューラルネットワークモデルは、しばしば過剰フィッティングや有用で高品質なデータの欠如といった問題に苦しんでいる。
同時に、トレーニングされた機械学習モデルを直接最適化問題に組み込むことは、物理に変形したトレーニングによって性能が向上するサーロゲート最適化の効果的かつ最先端のアプローチとなった。
本研究は、ニューラルネットワークモデルを埋め込んだ最適化問題に対して、物理知識を組み込んだ線形ニューラルネットワークモデルをアップグレードすることを提案する。
本研究は,広く受け入れられている線形整流線形単位(relu)活性化関数の他に,双曲的接点活性化関数に対する部分的線形近似による領域の拡大も示唆する。
3つのケーススタディ,ブレンディングプロセス,産業蒸留カラム,原油カラムの最適化について検討した。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
最後に、最適化問題に関連するCPU時間は、標準最適化結果よりもはるかに短い。
関連論文リスト
- The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
逆問題に対する解を学ぶために訓練されたニューラルネットワークは、トレーニングセット上でも古典よりも優れた解を見つけることができることを示す。
高速な推論のために新しいデータに一般化するのではなく、既知のデータに対するより良い解決策を見つけるためにも使用できる。
論文 参考訳(メタデータ) (2024-08-15T12:38:10Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - Linearization of ReLU Activation Function for Neural Network-Embedded
Optimization:Optimal Day-Ahead Energy Scheduling [0.2900810893770134]
電池劣化ニューラルネットワークに基づくマイクログリッドデイアヘッドエネルギースケジューリングのような応用では、訓練された学習モデルの入力特徴は最適化モデルで解決すべき変数である。
ニューラルネットワークにおける非線形アクティベーション関数の使用は、解けなければそのような問題を極端に解決し難いものにする。
本稿では, 非線形活性化関数を, 広く用いられている整流線形単位(ReLU)関数に着目して線形化する方法について検討した。
論文 参考訳(メタデータ) (2023-10-03T02:47:38Z) - Precision Machine Learning [5.15188009671301]
様々な関数近似法を比較し,パラメータやデータの増加とともにスケールする方法について検討する。
ニューラルネットワークは、しばしば高次元の例において古典的近似法より優れていることが判明した。
我々は,ニューラルネットワークを極端に低損失に訓練する訓練手法を開発した。
論文 参考訳(メタデータ) (2022-10-24T17:58:30Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Half-Inverse Gradients for Physical Deep Learning [25.013244956897832]
異なる物理シミュレータをトレーニングプロセスに統合することは、結果の質を大幅に向上させる。
勾配に基づく解法は、多くの物理過程の固有の性質であるスケールと方向を操作できるため、勾配流に深い影響を与える。
本研究では,この現象に苦しむことのない新しい手法を導出するために,物理・ニューラルネットワーク最適化の特性を解析する。
論文 参考訳(メタデータ) (2022-03-18T19:11:04Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。