論文の概要: FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations
- arxiv url: http://arxiv.org/abs/2302.01068v5
- Date: Wed, 23 Oct 2024 20:45:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:30.160023
- Title: FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations
- Title(参考訳): FedLAP-DP: 個人的損失近似の共有によるフェデレートラーニング
- Authors: Hui-Po Wang, Dingfan Chen, Raouf Kerkouche, Mario Fritz,
- Abstract要約: 我々は,フェデレーション学習のための新しいプライバシ保護手法であるFedLAP-DPを提案する。
公式なプライバシー分析は、FedLAP-DPが典型的な勾配共有方式と同じプライバシーコストを発生させることを示している。
提案手法は, 通常の勾配共有法に比べて高速な収束速度を示す。
- 参考スコア(独自算出の注目度): 53.268801169075836
- License:
- Abstract: Conventional gradient-sharing approaches for federated learning (FL), such as FedAvg, rely on aggregation of local models and often face performance degradation under differential privacy (DP) mechanisms or data heterogeneity, which can be attributed to the inconsistency between the local and global objectives. To address this issue, we propose FedLAP-DP, a novel privacy-preserving approach for FL. Our formulation involves clients synthesizing a small set of samples that approximate local loss landscapes by simulating the gradients of real images within a local region. Acting as loss surrogates, these synthetic samples are aggregated on the server side to uncover the global loss landscape and enable global optimization. Building upon these insights, we offer a new perspective to enforce record-level differential privacy in FL. A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes while achieving an improved trade-off between privacy and utility. Extensive experiments validate the superiority of our approach across various datasets with highly skewed distributions in both DP and non-DP settings. Beyond the promising performance, our approach presents a faster convergence speed compared to typical gradient-sharing methods and opens up the possibility of trading communication costs for better performance by sending a larger set of synthetic images. The source is available at \url{https://github.com/hui-po-wang/FedLAP-DP}.
- Abstract(参考訳): FedAvgのような従来のFederated Learning(FL)の勾配共有アプローチは、ローカルモデルの集約に依存しており、しばしばローカルとグローバルの目的の矛盾に起因する差分プライバシー(DP)メカニズムやデータ不均一性の下でパフォーマンス劣化に直面している。
この問題に対処するため,FLの新しいプライバシ保護手法であるFedLAP-DPを提案する。
我々の定式化は、局所的な画像の勾配をシミュレートすることで、局所的なロスランドスケープを近似する小さなサンプルセットをクライアントが合成することを含む。
ロスサロゲートとして機能し、これらの合成サンプルはサーバ側で集約され、グローバルなロスランドスケープを明らかにし、グローバルな最適化を可能にする。
これらの知見に基づいて、FLにおける記録レベルの差分プライバシーを強制する新たな視点を提供する。
公式なプライバシー分析は、FedLAP-DPが通常の勾配共有方式と同じプライバシーコストを発生させ、プライバシとユーティリティのトレードオフを改善していることを示している。
DPと非DPの双方で高度に歪んだ分布を持つ各種データセットにおけるアプローチの優位性を検証する。
提案手法は,有望な性能の他に,一般的な勾配共有手法よりも高速な収束速度を示すとともに,より大規模な合成画像の送信により,より優れた性能を実現するための取引通信コストの低減を図っている。
ソースは \url{https://github.com/hui-po-wang/FedLAP-DP} で公開されている。
関連論文リスト
- DP$^2$-FedSAM: Enhancing Differentially Private Federated Learning Through Personalized Sharpness-Aware Minimization [8.022417295372492]
Federated Learning(FL)は、複数のクライアントが生データを共有せずに、協調的にモデルをトレーニングできる分散機械学習アプローチである。
FLで共有されるモデル更新によって、センシティブな情報が推測されるのを防ぐために、差分プライベート・フェデレーション・ラーニング(DPFL)が提案されている。
DPFLは、共有モデル更新にランダムノイズを加えて、FLの形式的かつ厳格なプライバシ保護を保証する。
DP$2$-FedSAM: シャープネスを意識した個人化フェデレート学習を提案する。
論文 参考訳(メタデータ) (2024-09-20T16:49:01Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Balancing Privacy Protection and Interpretability in Federated Learning [8.759803233734624]
フェデレートラーニング(FL)は、ローカルクライアントから中央サーバにモデルパラメータを共有することで、グローバルモデルを分散的にトレーニングすることを目的としている。
近年の研究では、FLは情報漏洩に悩まされており、敵はローカルクライアントから共有パラメータを解析してトレーニングデータを回復しようとする。
本稿では,FLにおけるクライアントモデルの勾配に雑音を選択的に追加する,単純かつ効果的な適応型微分プライバシー(ADP)機構を提案する。
論文 参考訳(メタデータ) (2023-02-16T02:58:22Z) - Sparse Federated Learning with Hierarchical Personalized Models [24.763028713043468]
フェデレートラーニング(FL)は、ユーザのプライベートデータを収集することなく、プライバシセーフで信頼性の高い協調トレーニングを実現する。
階層型パーソナライズされたモデルを用いたスパースフェデレーション学習(sFedHP)という,モロー包絡に基づく階層型近位写像を用いたパーソナライズされたFLアルゴリズムを提案する。
また、連続的に微分可能な近似L1ノルムをスパース制約として使用して通信コストを低減させる。
論文 参考訳(メタデータ) (2022-03-25T09:06:42Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
フェデレートラーニング(FL)により、分散エージェントは、生データを互いに共有することなく、集中型モデルを共同で学習することができる。
スパーシフィケーションを増幅した新しいFLフレームワークを提案する。
提案手法では,ランダムなスペーシフィケーションと各エージェントの勾配摂動を統合し,プライバシー保証を増幅する。
論文 参考訳(メタデータ) (2020-08-01T20:22:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。