論文の概要: Balancing Privacy Protection and Interpretability in Federated Learning
- arxiv url: http://arxiv.org/abs/2302.08044v1
- Date: Thu, 16 Feb 2023 02:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 15:21:32.615319
- Title: Balancing Privacy Protection and Interpretability in Federated Learning
- Title(参考訳): フェデレーション学習におけるプライバシー保護と解釈可能性のバランス
- Authors: Zhe Li, Honglong Chen, Zhichen Ni, Huajie Shao
- Abstract要約: フェデレートラーニング(FL)は、ローカルクライアントから中央サーバにモデルパラメータを共有することで、グローバルモデルを分散的にトレーニングすることを目的としている。
近年の研究では、FLは情報漏洩に悩まされており、敵はローカルクライアントから共有パラメータを解析してトレーニングデータを回復しようとする。
本稿では,FLにおけるクライアントモデルの勾配に雑音を選択的に追加する,単純かつ効果的な適応型微分プライバシー(ADP)機構を提案する。
- 参考スコア(独自算出の注目度): 8.759803233734624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) aims to collaboratively train the global model in a
distributed manner by sharing the model parameters from local clients to a
central server, thereby potentially protecting users' private information.
Nevertheless, recent studies have illustrated that FL still suffers from
information leakage as adversaries try to recover the training data by
analyzing shared parameters from local clients. To deal with this issue,
differential privacy (DP) is adopted to add noise to the gradients of local
models before aggregation. It, however, results in the poor performance of
gradient-based interpretability methods, since some weights capturing the
salient region in feature map will be perturbed. To overcome this problem, we
propose a simple yet effective adaptive differential privacy (ADP) mechanism
that selectively adds noisy perturbations to the gradients of client models in
FL. We also theoretically analyze the impact of gradient perturbation on the
model interpretability. Finally, extensive experiments on both IID and Non-IID
data demonstrate that the proposed ADP can achieve a good trade-off between
privacy and interpretability in FL.
- Abstract(参考訳): フェデレーション・ラーニング(fl)は、モデルパラメータをローカルクライアントから中央サーバに共有することで、グローバルなモデルを分散的にトレーニングすることを目的としている。
しかし最近の研究では、FLは情報漏洩に悩まされており、敵はローカルクライアントから共有パラメータを解析してトレーニングデータを回復しようとする。
この問題に対処するため、差分プライバシー(DP)は集約前の局所モデルの勾配にノイズを加えるために採用されている。
しかし,特徴写像で有意な領域を捕捉する重みが乱れてしまうため,勾配に基づく解釈可能性法の性能は低下する。
この問題を解決するために,FLにおけるクライアントモデルの勾配に雑音を選択的に追加するシンプルな適応型微分プライバシー(ADP)機構を提案する。
また, モデル解釈性に対する勾配摂動の影響を理論的に解析した。
最後に、IDデータと非IIDデータの両方に関する広範な実験により、提案したADPがFLにおけるプライバシーと解釈可能性の良好なトレードオフを達成できることを示した。
関連論文リスト
- Collaboratively Learning Federated Models from Noisy Decentralized Data [21.3209961590772]
フェデレーテッド・ラーニング(FL)は、エッジデバイスからのローカルデータを使用して機械学習モデルを協調訓練するための重要な方法として登場した。
本稿では,ラベルノイズと比較して探索されていない領域である入力空間におけるノイズデータの問題に焦点をあてる。
本稿では,FedNS (Federated Noise-Sifting) という雑音を考慮したFLアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2024-09-03T18:00:51Z) - Enhancing Federated Learning with Adaptive Differential Privacy and Priority-Based Aggregation [0.0]
フェデレートラーニング(FL)は、ローカルデータセットに直接アクセスせずにグローバルモデルを開発する。
クライアントとサーバ間で転送されるモデル更新にアクセスすることが可能で、敵に機密性の高いローカル情報を公開する可能性がある。
微分プライバシー(DP)は、パラメータにノイズを加えることでこの問題に対処するための有望なアプローチを提供する。
本稿では、クライアントの相対的影響要因に基づいてノイズを注入し、パラメータを集約するパーソナライズされたDPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-26T16:55:07Z) - Mitigating Disparate Impact of Differential Privacy in Federated Learning through Robust Clustering [4.768272342753616]
Federated Learning(FL)は、データをローカライズする分散機械学習(ML)アプローチである。
最近の研究は、クラスタリングによるバニラFLの性能公平性に対処しようと試みているが、この手法は依然として敏感であり、エラーを起こしやすい。
本稿では,クライアントのクラスタを高度に均一な設定で効果的に識別する新しいクラスタ化DPFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:03:31Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
我々は,フェデレーション学習のための新しいプライバシ保護手法であるFedLAP-DPを提案する。
公式なプライバシー分析は、FedLAP-DPが典型的な勾配共有方式と同じプライバシーコストを発生させることを示している。
提案手法は, 通常の勾配共有法に比べて高速な収束速度を示す。
論文 参考訳(メタデータ) (2023-02-02T12:56:46Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in
Federated Learning Client Selection [16.975086164684882]
Federated Learning(FL)は、クライアントが自身のローカルデータ上でモデルを協調的にトレーニングできる分散機械学習パラダイムである。
FLの性能劣化の原因を数学的に検証し,様々なデータセット上でのFLの性能について検討する。
そこで我々はDubheという名のプラグイン可能なシステムレベルのクライアント選択手法を提案し,HEの助けを借りてクライアントを積極的にトレーニングに参加させ,プライバシを保護できるようにする。
論文 参考訳(メタデータ) (2021-09-08T13:00:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。