論文の概要: Double Equivariance for Inductive Link Prediction for Both New Nodes and New Relation Types
- arxiv url: http://arxiv.org/abs/2302.01313v8
- Date: Tue, 14 Jan 2025 01:28:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:45.570528
- Title: Double Equivariance for Inductive Link Prediction for Both New Nodes and New Relation Types
- Title(参考訳): 新しいノードと新しい関係型の両方のインダクティブリンク予測のための二重等価性
- Authors: Jincheng Zhou, Yucheng Zhang, Jianfei Gao, Yangze Zhou, Bruno Ribeiro,
- Abstract要約: 二重置換同変表現の概念を導入し,その有効性能を実証する。
二重置換同変表現に固有の制約を同定し、これらのモデルが効果的に学習する能力を制限する。
二重置換同変モデルと、すべての領域にまたがるパターンを学習するために設計された基礎モデルの概念の間には、根本的なギャップが残っている。
- 参考スコア(独自算出の注目度): 8.585879006426497
- License:
- Abstract: The task of fully inductive link prediction in knowledge graphs has gained significant attention, with various graph neural networks being proposed to address it. This task presents greater challenges than traditional inductive link prediction tasks with only new nodes, as models must be capable of zero-shot generalization to both unseen nodes and unseen relation types in the inference graph. Despite the development of novel models, a unifying theoretical understanding of their success remains elusive, and the limitations of these methods are not well-studied. In this work, we introduce the concept of double permutation-equivariant representations and demonstrate its necessity for effective performance in this task. We show that many existing models, despite their diverse architectural designs, conform to this framework. However, we also identify inherent limitations in double permutation-equivariant representations, which restrict these models's ability to learn effectively on datasets with varying characteristics. Our findings suggest that while double equivariance is necessary for meta-learning across knowledge graphs from different domains, it is not sufficient. There remains a fundamental gap between double permutation-equivariant models and the concept of foundation models designed to learn patterns across all domains.
- Abstract(参考訳): 知識グラフにおける完全な帰納的リンク予測の課題は注目され、それに対応するために様々なグラフニューラルネットワークが提案されている。
このタスクは、新しいノードしか持たない従来の帰納的リンク予測タスクよりも大きな課題を示す。
斬新なモデルの開発にもかかわらず、その成功に関する統一的な理論的理解はいまだ解明されておらず、これらの手法の限界は十分に研究されていない。
本稿では、二重置換同変表現の概念を導入し、その課題における効果的な性能の必要性を実証する。
さまざまなアーキテクチャ設計にもかかわらず、既存のモデルの多くが、このフレームワークに準拠していることを示す。
しかし、これらのモデルが様々な特徴を持つデータセットで効果的に学習する能力を制限するために、二重置換同変表現に固有の制限も特定する。
この結果から,知識グラフ間のメタラーニングには2つの等価性が必要であるが,それでは不十分であることが示唆された。
二重置換同変モデルと、すべての領域にまたがるパターンを学習するために設計された基礎モデルの概念の間には、根本的なギャップが残っている。
関連論文リスト
- Unfolding Tensors to Identify the Graph in Discrete Latent Bipartite Graphical Models [1.7132914341329848]
我々はテンソル展開法を用いて、離散二部グラフモデルに対する新しい識別可能性の結果を証明する。
この結果は、これらのモデルの科学的分野や解釈可能な機械学習における信頼できる応用に有用である。
論文 参考訳(メタデータ) (2025-01-18T23:08:25Z) - One Model for One Graph: A New Perspective for Pretraining with Cross-domain Graphs [61.9759512646523]
複雑なネットワークパターンをキャプチャする強力なツールとして、グラフニューラルネットワーク(GNN)が登場した。
既存のGNNには、慎重にドメイン固有のアーキテクチャ設計と、データセットのスクラッチからのトレーニングが必要です。
我々は、新しいクロスドメイン事前学習フレームワーク「1つのグラフのための1つのモデル」を提案する。
論文 参考訳(メタデータ) (2024-11-30T01:49:45Z) - Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
本稿では,2つのタスク間の相互指導を実現するための2段階のフレームワークを実装した,コガイドネットと呼ばれる新しいモデルを提案する。
第1段階では,単一タスクによる教師付きコントラスト学習を提案し,第2段階ではコガイドによる教師付きコントラスト学習を提案する。
マルチインテリジェントSLU実験の結果,我々のモデルは既存のモデルよりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-22T08:06:22Z) - A Multi-Task Perspective for Link Prediction with New Relation Types and
Nodes [10.350823341961185]
追加情報にアクセスせずにマルチタスク構造でグラフをテストする手法を提案する。
実世界のデータセットに対する我々の結果は,マルチタスク構造を持つグラフを効果的に一般化できることを実証している。
論文 参考訳(メタデータ) (2023-07-12T09:49:15Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
ドメイン適応技術は,異なる領域間のモデルを適応させることに重点を置いているが,ビデオ認識領域ではめったに研究されていない。
近年,映像のソースと対象映像の表現を統一するために,対角学習を活用する視覚領域適応はビデオにはあまり効果がない。
本稿では,ソースとターゲットの相互作用を直接モデル化するAdversarial Bipartite Graph (ABG)学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-31T03:48:41Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
本稿では,属性グラフの深部生成モデルのための新しいアンタングルメント拡張フレームワークを提案する。
ノードとエッジのデコンボリューションのための新しいアーキテクチャを用いて、上記の3種類の潜伏因子を解離する新しい変分的目的を提案する。
各タイプ内では、画像の既存のフレームワークの一般化が示され、個々の因子のゆがみがさらに強化される。
論文 参考訳(メタデータ) (2020-06-09T16:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。