論文の概要: Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing
- arxiv url: http://arxiv.org/abs/2009.02562v2
- Date: Tue, 22 Feb 2022 07:48:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 20:33:26.612120
- Title: Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing
- Title(参考訳): 確率的メッセージパッシングを用いた置換同値および近接認識グラフニューラルネットワーク
- Authors: Ziwei Zhang, Chenhao Niu, Peng Cui, Jian Pei, Bo Zhang, Wenwu Zhu
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
- 参考スコア(独自算出の注目度): 88.30867628592112
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties
highly desirable for GNNs. Both properties are needed to tackle some
challenging graph problems, such as finding communities and leaders. In this
paper, we first analytically show that the existing GNNs, mostly based on the
message-passing mechanism, cannot simultaneously preserve the two properties.
Then, we propose Stochastic Message Passing (SMP) model, a general and simple
GNN to maintain both proximity-awareness and permutation-equivariance. In order
to preserve node proximities, we augment the existing GNNs with stochastic node
representations. We theoretically prove that the mechanism can enable GNNs to
preserve node proximities, and at the same time, maintain
permutation-equivariance with certain parametrization. We report extensive
experimental results on ten datasets and demonstrate the effectiveness and
efficiency of SMP for various typical graph mining tasks, including graph
reconstruction, node classification, and link prediction.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性はGNNにとって非常に望ましい2つの重要な特性である。
どちらの特性も、コミュニティやリーダーを見つけるなど、いくつかの困難なグラフ問題に取り組むために必要である。
本稿では,主にメッセージパッシング機構に基づく既存のGNNが,その2つの特性を同時に保存できないことを示す。
そこで我々は,近接認識と置換等価性の両方を維持するため,SMP(Stochastic Message Passing)モデルを提案する。
ノードの近さを保つために,確率的ノード表現を用いて既存のGNNを増強する。
理論的には、GNNがノードの近接性を保ち、同時に、あるパラメータ化と置換等価性を維持することができる。
我々は,10個のデータセットに関する広範な実験結果を報告し,グラフ再構成,ノード分類,リンク予測など,典型的なグラフマイニングタスクにおけるsmpの有効性と有効性を示す。
関連論文リスト
- Higher-Order GNNs Meet Efficiency: Sparse Sobolev Graph Neural Networks [6.080095317098909]
グラフニューラルネットワーク(GNN)は,グラフ内のノード間の関係をモデル化する上で,非常に有望であることを示す。
これまでの研究では、主にグラフ内の高次隣人からの情報を活用しようと試みてきた。
我々は基本的な観察を行い、ラプラシア行列の正則とアダマールの力はスペクトルでも同様に振る舞う。
グラフ信号のスパースなソボレフノルムに基づく新しいグラフ畳み込み演算子を提案する。
論文 参考訳(メタデータ) (2024-11-07T09:53:11Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
本稿では,学習タスクに関係のないグラフエッジを適応的に識別する新しいエッジ分割GNN(ES-GNN)フレームワークを提案する。
本稿では,ES-GNNを非交叉グラフ記述問題の解とみなすことができることを示す。
論文 参考訳(メタデータ) (2022-05-27T01:29:03Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
グラフニューラルネットワーク(GNN)が導入される以前、不規則なデータ、特にグラフのモデリングと解析は、ディープラーニングのアキレスのヒールであると考えられていた。
本稿では,GNNのコア操作に対して,極めて単純かつ無作為な修正を施した中央ノード置換変分関数を提案する。
モデルの具体的な性能向上は、モデルがより少ないパラメータを使用しながら、有意なマージンで過去の最先端結果を上回った場合に観察される。
論文 参考訳(メタデータ) (2021-09-20T05:04:26Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Generalization and Representational Limits of Graph Neural Networks [46.20253808402385]
ローカル情報に完全に依存するグラフニューラルネットワーク(GNN)では,いくつかの重要なグラフ特性を計算できないことを示す。
メッセージパッシングGNNに対する最初のデータ依存一般化境界を提供する。
私たちのバウンダリは、既存のVC次元ベースのGNN保証よりもはるかに厳格で、リカレントニューラルネットワークのRademacherバウンダリと同等です。
論文 参考訳(メタデータ) (2020-02-14T18:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。