Accelerating Policy Gradient by Estimating Value Function from Prior
Computation in Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2302.01399v1
- Date: Thu, 2 Feb 2023 20:23:22 GMT
- Title: Accelerating Policy Gradient by Estimating Value Function from Prior
Computation in Deep Reinforcement Learning
- Authors: Md Masudur Rahman and Yexiang Xue
- Abstract summary: We investigate the use of prior computation to estimate the value function to improve sample efficiency in on-policy policy gradient methods.
In particular, we learn a new value function for the target task while combining it with a value estimate from the prior.
The resulting value function is used as a baseline in the policy gradient method.
- Score: 16.999444076456268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the use of prior computation to estimate the value
function to improve sample efficiency in on-policy policy gradient methods in
reinforcement learning. Our approach is to estimate the value function from
prior computations, such as from the Q-network learned in DQN or the value
function trained for different but related environments. In particular, we
learn a new value function for the target task while combining it with a value
estimate from the prior computation. Finally, the resulting value function is
used as a baseline in the policy gradient method. This use of a baseline has
the theoretical property of reducing variance in gradient computation and thus
improving sample efficiency. The experiments show the successful use of prior
value estimates in various settings and improved sample efficiency in several
tasks.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Vlearn: Off-Policy Learning with Efficient State-Value Function Estimation [22.129001951441015]
Existing off-policy reinforcement learning algorithms often rely on an explicit state-action-value function representation.
This reliance results in data inefficiency as maintaining a state-action-value function in high-dimensional action spaces is challenging.
We present an efficient approach that utilizes only a state-value function as the critic for off-policy deep reinforcement learning.
arXiv Detail & Related papers (2024-03-07T12:45:51Z) - Improving Deep Policy Gradients with Value Function Search [21.18135854494779]
This paper focuses on improving value approximation and analyzing the effects on Deep PG primitives.
We introduce a Value Function Search that employs a population of perturbed value networks to search for a better approximation.
Our framework does not require additional environment interactions, gradient computations, or ensembles.
arXiv Detail & Related papers (2023-02-20T18:23:47Z) - Variance Reduction for Score Functions Using Optimal Baselines [0.0]
This paper studies baselines, a variance reduction technique for score functions.
Motivated primarily by reinforcement learning, we derive for the first time an expression for the optimal state-dependent baseline.
arXiv Detail & Related papers (2022-12-27T19:17:28Z) - A Generalized Bootstrap Target for Value-Learning, Efficiently Combining
Value and Feature Predictions [39.17511693008055]
Estimating value functions is a core component of reinforcement learning algorithms.
We focus on bootstrapping targets used when estimating value functions.
We propose a new backup target, the $eta$-return mixture.
arXiv Detail & Related papers (2022-01-05T21:54:55Z) - Offline Reinforcement Learning with Implicit Q-Learning [85.62618088890787]
Current offline reinforcement learning methods need to query the value of unseen actions during training to improve the policy.
We propose an offline RL method that never needs to evaluate actions outside of the dataset.
This method enables the learned policy to improve substantially over the best behavior in the data through generalization.
arXiv Detail & Related papers (2021-10-12T17:05:05Z) - Unifying Gradient Estimators for Meta-Reinforcement Learning via
Off-Policy Evaluation [53.83642844626703]
We provide a unifying framework for estimating higher-order derivatives of value functions, based on off-policy evaluation.
Our framework interprets a number of prior approaches as special cases and elucidates the bias and variance trade-off of Hessian estimates.
arXiv Detail & Related papers (2021-06-24T15:58:01Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Taylor Expansion of Discount Factors [56.46324239692532]
In practical reinforcement learning (RL), the discount factor used for estimating value functions often differs from that used for defining the evaluation objective.
In this work, we study the effect that this discrepancy of discount factors has during learning, and discover a family of objectives that interpolate value functions of two distinct discount factors.
arXiv Detail & Related papers (2021-06-11T05:02:17Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.