Improving Deep Policy Gradients with Value Function Search
- URL: http://arxiv.org/abs/2302.10145v1
- Date: Mon, 20 Feb 2023 18:23:47 GMT
- Title: Improving Deep Policy Gradients with Value Function Search
- Authors: Enrico Marchesini, Christopher Amato
- Abstract summary: This paper focuses on improving value approximation and analyzing the effects on Deep PG primitives.
We introduce a Value Function Search that employs a population of perturbed value networks to search for a better approximation.
Our framework does not require additional environment interactions, gradient computations, or ensembles.
- Score: 21.18135854494779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Policy Gradient (PG) algorithms employ value networks to drive the
learning of parameterized policies and reduce the variance of the gradient
estimates. However, value function approximation gets stuck in local optima and
struggles to fit the actual return, limiting the variance reduction efficacy
and leading policies to sub-optimal performance. This paper focuses on
improving value approximation and analyzing the effects on Deep PG primitives
such as value prediction, variance reduction, and correlation of gradient
estimates with the true gradient. To this end, we introduce a Value Function
Search that employs a population of perturbed value networks to search for a
better approximation. Our framework does not require additional environment
interactions, gradient computations, or ensembles, providing a computationally
inexpensive approach to enhance the supervised learning task on which value
networks train. Crucially, we show that improving Deep PG primitives results in
improved sample efficiency and policies with higher returns using common
continuous control benchmark domains.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Gradient Informed Proximal Policy Optimization [35.22712034665224]
We introduce a novel policy learning method that integrates analytical gradients from differentiable environments with the Proximal Policy Optimization (PPO) algorithm.
By adaptively modifying the alpha value, we can effectively manage the influence of analytical policy gradients during learning.
Our proposed approach outperforms baseline algorithms in various scenarios, such as function optimization, physics simulations, and traffic control environments.
arXiv Detail & Related papers (2023-12-14T07:50:21Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
Policy gradient methods seek to produce monotonic improvement through bounded changes in policy outputs.
In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective.
We show that the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration.
arXiv Detail & Related papers (2023-11-10T03:02:49Z) - Accelerating Policy Gradient by Estimating Value Function from Prior
Computation in Deep Reinforcement Learning [16.999444076456268]
We investigate the use of prior computation to estimate the value function to improve sample efficiency in on-policy policy gradient methods.
In particular, we learn a new value function for the target task while combining it with a value estimate from the prior.
The resulting value function is used as a baseline in the policy gradient method.
arXiv Detail & Related papers (2023-02-02T20:23:22Z) - Optimal Estimation of Off-Policy Policy Gradient via Double Fitted
Iteration [39.250754806600135]
Policy (PG) estimation becomes a challenge when we are not allowed to sample with the target policy.
Conventional methods for off-policy PG estimation often suffer from significant bias or exponentially large variance.
In this paper, we propose the double Fitted PG estimation (FPG) algorithm.
arXiv Detail & Related papers (2022-01-31T20:23:52Z) - Bag of Tricks for Natural Policy Gradient Reinforcement Learning [87.54231228860495]
We have implemented and compared strategies that impact performance in natural policy gradient reinforcement learning.
The proposed collection of strategies for performance optimization can improve results by 86% to 181% across the MuJuCo control benchmark.
arXiv Detail & Related papers (2022-01-22T17:44:19Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z) - Implicit Under-Parameterization Inhibits Data-Efficient Deep
Reinforcement Learning [97.28695683236981]
More gradient updates decrease the expressivity of the current value network.
We demonstrate this phenomenon on Atari and Gym benchmarks, in both offline and online RL settings.
arXiv Detail & Related papers (2020-10-27T17:55:16Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - Deep Bayesian Quadrature Policy Optimization [100.81242753620597]
Deep Bayesian quadrature policy gradient (DBQPG) is a high-dimensional generalization of Bayesian quadrature for policy gradient estimation.
We show that DBQPG can substitute Monte-Carlo estimation in policy gradient methods, and demonstrate its effectiveness on a set of continuous control benchmarks.
arXiv Detail & Related papers (2020-06-28T15:44:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.